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THEORY OF A RADIO-FREQUENCY "SPIN FILTER" FOR A

METASTABLE HYDROGEN, DEUTERIUM, OR TRITIUM ATOMIC BEAM

oy

Gerald G. Ohlsen and Joseph L. McKibben

ABSTRACT

Techniques for selection of metastable hydrogen, deuterium,
or tritium atoms with a particular nuclear spin polarization

are discussed.

The emphasis is on the "three-level interaction"

technique, which promises to be the most versatile and satis-

factory of those evailable.

1. INTRODUCTION

In connection with the development of the Los Ala-
mos Scientific Laboratory "metastable hydrogen"
polarized ion source, calculations about possible
nuclear spin selection techniques have been made.
The discussion of these calculations, which have
been partially reported,l’2 comprises the main part
of this report. However, for orientation purposes,
the basic operating scheme for the LASL polarized
ion source is reviewed. The discussion in this sec-
tion 18 in terms of protons, although the scheme

works as well for deuterons or for tritons.

A beam of protons is extracted from a duoplasmatron
and ‘tBen decelerated to a velocity (~ 3 x 107 cm/
sec) corresponding to 500 eV. Additionel electrons
are injected to space-~charge neutralize the beam,
which is then passed through a curtain of cesium
vapor. Collisions in the cesium coanvert a large

number of protons into st atoms,3 together with
ground-state atoms, and positive and negative ions.
The beam then enters a longitudinal magnetic field
of about 500 to 600 G. A transverse “clearing"
electric field separates the charged particles from
the neutral stoms (st and Hls). The neutral atoms
then pass through a radio-frequency transition re-
gion where the H2S atoms possessing any but the de-

sired nuclear spin magnetic quantum number are

quenched to the ground state while a large fraction

of the atoms with the selected oy remain in the st

state. This mixture of ~100% polarized 1% and

essentially unpolarized# Hls atoms is then passed
through an argon exchange cell, where, at this par-
ticular velocity, the resction H2S +A+H + A+
occurs with & probability very much larger than does

the corresponding ground-state reaction.h

One interesting point is that‘the LASL nuclear spin
selection method selects rather than rejects a par-
ticular nuclear spin state. Thus, a deuteron beam
corresponding to a pure my = 1, 0, or -1 state may
be obtained with a single radio-frequency selection
device. The selecﬁion device, which employs
perpendicular radio-frequency and static electric
fields, behaves as a filter which allows only those
metastable atoms with a specific nuclear spin quan-
tum number (mI) to pass through without being
quenched to the ground state. This device is here-

inafter referred to as a "spin filter."

The theoretical upper limit for tramsmission of the
desired nuclear spin state through the spin filter
is 1/2. Thus, for deuterons, at least 5/6 of the

*The portion of the Hls
which arises from decay of st atoms in the rf re-

produced background current

gion is in fact partially polarized in the opposite

sense.




incident metastable beam will be quenched, while for
protons or tritons at least 3/4 of the incident
metastable beam will be quenched. In addition, the
incident atomic beam will have a large (perhaps 80
or 90%) ground-state component.

The degree of selection achieved in the argon ex-

change reaction depends on the ratio of the H2S +

A+H + A+ reaction cross section (denoted by 028)
to the Hls +A+H + A+ reaction cross section (de-

noted by ols).

This ratio is not accurately known
at present. The quantity which can be readily mea-
gured is the quenching ration Q; that is, the ratio
of the negative ion yield obtained through a cesium
exchange reaction followed by an argon exchange re-
action without and with the application of inter-
vening fields sufficient to quench the entire meta-
stable component of the beam. This ratio can be
expressed in terms of the fraction of the atomic

beam in the metastable state, f, as follows:

Q= (1- 1) + £(®/0"5).
The quenching ratio is related to the resulting nu-
clear spin state purity (p) by

p=1-%/Qn
for protons and tritons, and by
p=1-6/Qn

for deuterons, where n is the efficiency of the spin
filter. Thet is, n = 1 if the theoretical upper
1imit of 1/2 for transmission is reached. The re-
letionship between p and the beam polarization para-
meters is given below.

Spin 1/2 Particles

2 i
1/2 P
-1/2 -Pp

8pin 1 Particles

e d = 2z
1 P P
0 0 -2p

-1 -P P

In the above P = N(1/2) - N(-1/2), P, = N(1) -
N(-1), and P N(1) + N(-1) - 2N(0), where N(mI)
is the fraction of the beam particles with quantum

number mp.

A measured value of Q = 90 was reported in Reference

"4, This corresponds, for n = 0.8 (about the velue

expected), to a spin state purity corresponding to
91.7% for deuterons and 9%.5% for protons and tri-
tons. However, preliminary date obtained at LASL
suggest that this value may be high by & factor of
~2. For intense beams, the achievable Q seems to
be further reduced to about 30. If these prelimi-
nary indications are correct, a spin state purity of
about 83% for protons and tritons, and 75% for deu-
terons, would be expected.

2. ENERGY LEVELS OF THE HYDROGEN ATOM

We begin by reviewing briefly some facts about the
n = 2 energy levels of the hydrogen atom. Figure 1
shows the n = 2 energy levels in a weak external
magnetic field. At zero magnetic field, the energy
difference between the n = 2 and n = 1 states is

13.6($é - l-2)ev = 10.15 eV. The 25,
12 2

level spacing (the Lemb shift) correspords to about
1059 MHz while the 2P3/2 - 2P1/2 level separation

72~ 12

corresponds to about 10,968 MHz. In a weak magnetic
field, the 2P3/2 states are split into four megnetic
substates and the 2Pl/2 and 251/2 levels each split

into two magnetic substates. The 2P substates

3/2
are usually referred to as a (for m; = 3/2), b (for

Ll T

ne2 ENERGY LEVELS OF
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Fig. 1. The n = 2 levels of the hydrogen atom in a
weak magnetic field} nuclear hyperfine structure is
neglected.
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Fig. 2. The 281/2 and 21’1/2 levels of the hydrogen

atom vs megnetic field with nuclear hyperfine struc-
ture included. The diagram for tritium atoms is
nearly identical.

my = 1/2), ¢ {for my = -1/2), and 4 (for my = -3/2).
Similarly, the 2P1/2 states are referred to as e

(for my = 1/2) and f (for m; = -1/2); the 281/2
states are referred to as o {(for m_ = 1/2) and 8

J
(for m = -1/2).

As shown in Figs. 2 and 3 for the 28 and 2P

1/2 1/2
levels, which are the ones of primary interest here,
the nuclear hyperfine interaction further modifies
the energies. 1In sufficiently large magnetic fields,
each magnetic substate, for hydrogen or tritium

atoms, is split into two nuclear magnetic substates.
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Fig. 3. The 281/2 and 2Pl/2 levels of the deuterium

atom vs megnetic field with nuclear hyperfine struc-
ture included. The order of the e and f levels is
the same as the order of the a and B levels, respec-
tively.

That is, there is a substate corresponding to each
of the allowed nuclear magnetic quantum numbers

o, = 1/2 or my = -1/2. For deuterium etoms, where
m, can have the value 1, O, or -1, each substate is
split into three nuclear magnetic substates. Note
that the order of the o substate energies is in-
verted when the electron spin my value is negative.

The hyperfine energy level diagram for the 231/2
states is described by the Breit-Rabi formula:

W o W gA—g(l-amF 2,1/2

2(21+1) Han KO e M X my

where

X = B/B,.,

B) = aw(1 + e)/(gpu )

1836.ng

€= 1/(——;;————' -1,

gy = Lande g factor,

u

o Bohr magneton,

B = magnetic field,

AW

zero field hyperfine splitting,

g = uI/I = nucleer g factor, and

mp = By + mp

The last term arises from the interaction of the
nuclear magnetic moment with the applied magnetic

field and is, for ordinary megnetic fields, very
small.

The Breit-Rebi formula is only approximate for the
2Pl/2 levels since, for the field strengths of in-
terest here, J is only an approximately good quan-~
tum number. An exact calculation requires the di-
agonaiization of the Hamiltonian including both
fine structure and hyperfine structure terms; in
the numerical results presented below we have only
applied a first order correction to the Breit-Rabi
formula by shifting the e and f lines downward by
an amount calculated from the solution to the fine

structure Zeeman splitting problem. Referred to

the mean value of the multiplet, the correction 3
! B

is &AW = - §w(521 G). The values for the constants

assoclated with the cases of interest are tebulated

in Table I.




Table

Parameters Characterizing the Hyperfine Structure

I
of the n = 2 States

of Hydrogen, Deuterium, and Tritium Atoms

Nucleus State 85 g1 AW(MHzZ) € B, (in G)

Proton s, /2 2.00229 5.585L486 177.551 1.522 x 1073 63.448 T
Proton 2p, /2 0.66589 5.585486 59.190 4.589 x 1073 63.796

Deuteron 28, ,,  2.00229 0.857%07 Lo.924 0.233 x 1073 14,605

Deuteron 2P1/2 0.66589 0.857407 13.640 0.702 x 10-3 14.644

Triton 28, /2 2.00229 $.957680 189.588 1.623 x 1073 67.755

Triton 2p, /2 0.66589 5.957680 63.200 4.897 x 1073 68.138

In the numerical tabulations of the energy levels
(Tables II-VII), all energies are expressed in
equivalent frequency units (MHz) and are referred
to the centroid of the 281/2 zero field multizl;t.
The latest published values of the Lamb shift °
have been used in this calculation (1058.05 MHz for
H atoms and 1059.34% MHz for D atoms). A value of

1058.05 MHz has been used for T atoms.

The states are labeled by their strong field quan-
tum numbers. Note that, for sufficiently high
fields, the frequency separation for states whose

; values differ by 1 unit is AW/2 for spin 1/2
particles and AW/3 for spin 1 particles. Note also
that the megnitude of the field Bl’ which is cus-

tomarily thought of as the field value which de-

m

fines the weak and strong field regions, is much
smaller here than is the case for ground-state

atoms.

3. SELECTION RULES

The angular momente involved in the complete de-
scription of a one-electron atomic state are the
orbital angular momentum I; the spin angular mo-
mentum g; and the nucleer spin anguler momentum f.
In a very strong magnetic field (i.e. in the
Pegchen-Back region, which is -105 G or greater
for n = 2 hydrogen atams) the quantities I, 3, and
f are completely decoupled. Thus, transitions may
be induced which involve only one of the pairs of

Quantum numbers L,mz; s,m_; or I.mI. In weaker

8.

fields where §and s couple to form 7 (usually known
as the strong field region, which is in the range
—4102-10h G for n = 2 hydrogen atoms), transitions
can be induced which involve either J,mJ or I,mI.
Fipally, for very weak fields, 3 and f couple to
form %, and transitions will involve changes in
F,mF.

is always constant in atomic physics.

For a one-electron atom, s is a constant; I

We are concerned here only with the lowest order
transitions; i.e., with electric and magnetic di-

pole transitions.

a. Electric Dipole Selection Rules

The electric dipole operator is e(E - ), where e
is the electronic charge, f is an applied (possibly
oscillating) electric field, and ? is the electron-
nucleus radius vector. Since this operator is odd,
it can have nonzero matrix elements only between
states of opposite parity; i.e., AL must be odd.
Further, if one expands the operator into spherical
components, it can be shown (Section 6) that AL =

] is required.

For very strong field; then, the selection rule is
AR = 2] Amg = 0, t1 and AmI = Ams = 0, since this
operator does not affect the spin functions. For
strong fields we have AJ = O, %1; AmJ = 0, *1 and
AmI = 0. For veak fields, we have AF = 0, t1; Am
= 0, 1.

quantity is appropriate among my, m

F .
If Am = 0, where m represents whichever

gs Bg» By, OF
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-761000

-71?094

-72‘092

-716,92

=7n8,96

“701.03

=693.13

-585,25

-677161

-659060

~661.82

*6S4.07

=666,3%

RETAa STATES

M‘l-o.%
wlN43,75
-1052,63
-1n61,99
winTleal
=1080,86A
«~1090434
«1099 .24
«-1109,40
w1118,98
w]l 128,59
-1138,23
«l147,90
«l157e¢A1
~1167.15
1177412
~]1186.92
119675
«1206452
=121he51
=]22Rebs
w]123Rek(
=1246439
=]1256442
=17266.,48
-1276,56
w1786 AR
17294 ,R4
«1307402
=1317,24
=1327.48
«1337,76
«1348,n8
«1358,42
«]136R RN
«1373,.20
w]389,64
wl400e412
«14104R?
=1421415
«1431.72
=1442432
wl482,38
=1463¢62
w4743
«1485.n4
=1495,80
=1506¢59
151741
=]1R2Re26H
»]153%415
wl55ne07

MI20,5
=1102,44
«1103,.94
=-1107,95
-1113.76
=1120.74
-1128,47
=1136,A9
=1145,75
=1154,05
-1163,03
=1172,15
-1181,3R
«1190.71
=1200.12
~1209.60
=1219.15%
=1228.75
=1238.4)
-1248.,12
-1257.R7
=1267.A7
=1277.51
-1287.,39
«1297,32
-1307,78
~1317,78
~1327,32
-1337,.,40
w1347,51
«1357,6S
=1367 R4
-1378,n6
-1388,31
«139R,60
-1408,97
-1419,27
«1429,46
-1“000R
-1450,54
=1461.n3
“1471,85
-14R2.11
-1492.70
'1503012
~1513.9R
=1524.66
~1535,13R
=1546.14
']556.°2
'156707‘
=1578,89




GAUSS

0.0
200
4040
6040
80.0

10060
170.0
140.0
16040
1R0.0
2n0.0
220.,0
240,0
2600
28040
30040
372040
34040
360.0
3R0.0
4000
4200
44040
46040
4R0eQ
Sn0,.0
520,0
S40,0
560,0
5R0,0
600,0
620,0
640,0
660,0
6RO ,0
700,0
770,0
740.0
7600
7800
80060
820.0
84040
B600
8R0.0N
90ne0
9700
S40en
96040
9R0.0
10000

X

0enNO
1369
2739
4¢108
Sea77
6eR4GT
Re?16
Qe5R6
104988
J2+324
13¢A94
15eNA3
1664232
17«R02
196171
?0.‘301
21510
?34279
240649
264018
2763R7
PRe 787
300126
314496
3I2 +RAS
34,2734
35.,h06
36,973
3IR,342
39,712
41,081
62,45}
43,820
45,1AR9
46,559
47,928
49,797
qo.667
52036
534405
S4e¢775
R6e144
57514
SR.RA3
A0e252
610h22
fP+991)
64¢3A0
65730
570099
68e4h0

NEUTERIU

TaBILE Iv

M ATOM 2§

ALPHA STATES

LRE D1
13.64
41,68
69,72
97,76

125.80
153.84
209,92
237.96
266.00
294,04
322.08
350,12
378,16
406,20
434,24
462,28
490,32
518,36
546,40
ST4,46
602.47
630,51
658,55
686,59
714,63
742,67
770,71
798,75
R26,79
854,83
882,87
9in,91
938,95
966,99
Q95 03
1023,07
1051.11
1079,15
1107.,19
1135,23
1163,27
1191.31
1219.35
1247,39
1275443
130347
l33la51
1359,.55
1387,59
1419.63

MI=p
13.64
13.01
G8.98
A6.19

113.66
141.39
169.22
197.1n
225.02
25?.96
2RN49
INR.RR
336,86
344,85
392.84
62n.813
448,83
476,84
532.85
S6n.86
SRR.8B7
616.8R
A44 490
677.91
700,93
728,98
756,96
7R4,.98
A13.00
841,02
869,04
R97,06
928 ,0R
953,10
9a1,12
1009,14
1037.16
1065419
1093,21
1171.23
1149.25
1177.28
1205.3n
12733,.32
126134
1249.37
13]7-3°
134542
137344
1401446

MI=a]

13em4

2184

46.03

T2.77
10017
12782
19559
133443
211432
?3Q.24
26717
29512
323409
351006
37903
40Ten)
43%.n0
462499
690.QR
51897
G46497
RT4e96
AD2e96
A30e06
658,96
A8/ 4,97
714,97
742,97
770,98
798,498
R26,99
R%4 ,99
RB3,00
911,01
939,n2
967 ,n2
Q95 ,n3
102304
105108
1079406
1107en?7
113%.n8
1163¢09
1191.10
121911
1747e12
127513
130314
1331015
1359016
1387.17

STATES

BETA STATES

Mlaw]

134,54
=14.40
42,44
‘7004“
'QBOQ7

'126.56
'15“.60
=1R2,64
-210.68
'238.72
=266,76
=294 ,R0
=322,R3
‘350.“7
-378.91
-406095
w434 ,99
«463.n3
=491.n7
~519.11
'547.15
«575.19
"603073
631,27
=659,1)
687,35
-715,39
-743,43
.771.47
«799,51]
~827,85
«885,89
-883,43
=911,647
-939,71
«967,7%
=995 _79
=1n234R3
*1051.R7
“1079,.91
=1107.95
-1135.99
=1164.03
»1192.07
~1220611
-1248,14
=1276.18
-130‘0?2
*1332.26
=1360430
=1388,34

MI=n
27«28
w35449
«-59.7T0
w86e45

=117+R6
=14152
16931
«]197.17
225407
«253.00
~280.95
«30Re«9]
=»336AR8
=36487
=392.86
«420eRH
*=44B.R5
=4TheRS
=50485
=532.86
56087
«58R A8
'616039
644490
67292
-700.03
728,95
756,97
=784,98
«A13,00
«841,02
«B69,04
«=R97,06
=325,0R
=953,10
-981,12
«1009.14
«1037¢17
=1065¢19
«1093.21
»1121+23
1149425
117728
«1205¢30
=123332
1261435
-1283¢37
*1317¢39
*134%5442
«1373444
140146

MIs)
27428
46064
.72.56
'99071

127,25
~]1586,97
'13?078
=-21N0.65
=21R,55
~2h6.48
294042
=3723R
=380,35
=37R.32
=406630
w434 42R
«462.27
=49n.26
-51ﬂl25
-B46.24
=8574424
-602e24
=-63ne24
68424
~6R6e24
'71‘.20
742,25
«-770,25
T8 ,26
826,26
884,27
-882,27
«910,28
=911 ,20
=964 4,30
=994 ,30
=1022,31
«108n032
1078433
110634
=11734.35
~1162¢36
=1190.37
=1218.3R
=-1246A¢39
']2740“0
«1302e4)
=13Ine42
~135R443
=13Rhab4
1614465

11




12

GAUSS

De0

20a0

4040

6040

800
1N0.0
170.0
140.0
160,0
1R0,0
200.,0
220,0
240,0
260,0
2R0,0
300,0
320,0
340,0
360,0
380,0
4n0,0
4720,0
440,0
460,0
4RN,0
S00,0
520,0
540,0
S60,0
SR .0
600,0
62040
640,0
660,0
680,40
70040
77200
T40.0
T760,0
7R0,0
800,0
820,0
B40,0
8A0.0
B8RO0
9n0.0
92040
9400
960,0
980,0
1000,0

X

0000

1¢3A6
20731
4enST
S5e46k3
64829
Be196
94560
10,926
124292
13,687
15,023
16,4389
17,755
19,120
20,4R6
21,8582
23.217
24 ,5R3
25,949
27,315
28,6R0
30,046
31.412
32,778
34,143
35,509
36,R7TS
3R,241
39,6Nn6
40,972
42.338
43,703
45,069
464435
4TeRp1
494166
50532
51898
53,264
54,679
565,995
57,361
S8.727
60en92
61458
62182“
6441R9
A5¢555
66,921
68,787

DEUTFRIY

TaBLE V

M ATOM 2P

ALPHA STATES

MI=]
'105“.79
'1045.“8
'1036020
=1026.96
.1017.74
=]100R,56

=999,41
990,29
~981,20
«972,15
-963,12
-954,13
-945,17
«536,24
«927,35
«91R, 48
~909,65
«900,85
-892,08
-R83,34
874,64
«865_96
=-857,32
-B4R 71
-840,13
«831,58
-823,07
-814,59
806,14
«797,72
-789,33
780,97
-772,.65
-764,36
=756,10
«747.87
=739,67
=731.51
~723,38
-715,28
-707,21
«699 17
-69].16
=683,19
'675.25
=667¢34
=659 .46
«651,6]
=-643,80
-636,02
-628,27

Mi=0
-loq‘.79
-10“3037
~1039.8¢
~1030.85
~1021.79
-101272
-1003064

=994 ,57
«-9R5,53
«976,950
«967 .51
~958,54
949,60
=940 ,69
«331,81
«9272,96
«-%14,14
«-9n5,35
«=B96 60
-8R7,87
-879,17
=-870,51
-861,88
-8%3,27
844,70
-R36,17
=R27,66
-819,18
wR10.74
=802,33
«793,95
=785,60
777,28
«T4R 99
=760.74
=752,52
=T44,33
“T36,17
«728,04
=719,94
«-711,88
«703,.85
=695 ,85
=hR7.88
'679094
«672.03
'666.16
-656.3?
-648o51
-640,73
-632,9A

MIZwl
=1n54479
1052410
=1n44.10
»1n35.29
1026430
=1n17.25
=1n08.18

=399 413
=980,10
«381,08
'972009
963,13
=954 ,20
©945,30
«93h,42
=927,58
=Q]18,76
=909,9R
901,73
=R92,91
=RB3,R)
wR7S,16
=R66,53
=R97,93
=R49 36
=R40)4R3
wR32,33
«A23,R6
'nlso‘?
=307 401
738,63
~790429
«7R1 .97
w773 .69
765464
757422
»T7494n3
=T4neR8
=732.76
=724 ,66
=T16,A0
=708,87
-700.%8
=£92+61
=A84.68
»676¢78
=668,49p
“661e¢07
653426
=h4S .48
=637,74

STATES

RETA STATES

Mize]
=1054,79
“10hé4,14
=1073.51
=1082.,92
=1092.35
=1101.R2
“1111.,32
~1120,RA
«1130,42
-1140,0?
=1149,65
«1159,131
~1169,00
-1178,72
'llSR.‘R
-1198,27
=1208,n9
-1217,94
~1227,82
~1237,73
~1247 ,6R
'1257.66
-1267,47
-1277,71
«~1287,79
-1297.R9
=1308,03
-1318,20
=1328,.40
=1338,A3
-1348,90
-1359,20
=1369 813
«1379 ,R9
=1390,7R
=1400.70
~1411.16
=1421,5h5
~1432.17
-]1442,77
«1453.130
=1463,92
“14T76,56
»1485,24
'1695.99
'1506069
=1517.,47
~1528,27
=1539,11
'1549.98
-1560,A8

Mi=zgQ
«]106Re43
«1071¢1R8
=]107927
*108Re¢24
=]09747
=1106¢8]
=1116023
=1125+70
«1135.21
-1144,77
=1154.37
=1164,00
«]l173.67
«1183,37
«1193,11
=1202.88
=1212.69
-1222.52
«12372.39
w]1247,79
=1252,73
=1267,20
=1277.20
=1282,?23
=1292,.,29
«1307.39
=1312.51
=13224.67
»1332.R7
«1343409
«1353.34
«1363463
=1373,985
~1384,30
«1394469
=140%5¢10
141555
=1426¢03
=1436:54
=1447,08
-1457.,A6
-w1468,26
=1478,90
«1489.57
=150n.28
=1511°01
=152177
153257
©]S543.40
«1554,26
-1565.16

MIx]
=106Re43
«1074.89
«10R3.5%
=1NQ2.66
=11n1.93
=1111.29
«1172071
«113n,1R8
«1139,70
=1149,26
«115R8,85
=-11AR,48
-117R,14
=1187,84%
«1107,57
«12n7,34
«1217,14
=1226,97
«1234,83
-1246,73
«~1256,66
«1266,62
«l276,61
=12Rh 64
=1296,69
«13nA,7R
=1316,91
wl1327,06
«1337,24
=1347,46
=1357,71
=13A7,.99
=1378,30
=13RR,65
«=1399,03
=14n09443
-1“‘9.88
«143n435
=1640,85
«-1451,39
-1461.96
~1472,55
=14R3,19
=1493.85
=15n4.54
=151527
=1526403
1536482
«1547,66
«1558,50
=15/9,38




GAUSS
Qe
2040
400
600
R0e0
1000
1200
14060
16040
1R040
20040
22040
24040
26040
28040
300.0
320.0
34040
36040
3R0.0
4n0a.0
4200
44040
4A060N
4R0en
500.0
5200
540,0
560,0
8RN0
6nn,n
620,0
640,0
66040
68NN
70060
72040
74000
76040
TRO«0
800.0
R20.0
840.0
8600
BRAN.O
9n0.0
920.0
9400
96040
93040
10000

TABLE V1

TRYTIUM ATOM 26 STATES

X

0en0

+ 298

«8990

oRRG
1¢1R1
14476
1771
2¢0K6
2361
2eAR7
20952
3247
36542
34R37
40133
44428
40723
Sen18
S5e¢313
5608
5¢904
6199
Aet 4
6789
TenR4
T«379
T«67S
T.970
A,7R%
ReBA0
A,R8S
9,151
9,446
9+741
10036
10331
10676
10922
11217
11672
11«R07
120102
12¢39R8
125893
12988
13.2R3
13.578
134873
1441KA9
140464
14759

ALPHA STATFS

MIan,S
47,40
75,47

103,54

131.61

159,69

187,76

215.83

243,90

271,97

300,09

32R,12

356,19

384,26

412,33

440,41

468,48

496,55

524,62

552,69

580,77

608,84

636,91

664,98

693,05

721413

749,20

777,27

805,34

833,41

861,49

889,56

917,63

945,70

973,77

1001.85
1029,92
1057.99
1086,n6
1114.,13
1142,21
1170.78
1198,35
1226.42
1254,49
1282,.597
1310n.64
1338,71
1366,78
1394,85
1422.,93
1451400

MIawne.§
47440
146
QP 46R
79,22
Q9,28
121460
1“50‘0
17020
195,.7n

221+6R
24R,06
INY B0
37A,5}
355.68
3R2.89
410423
437,64
4h%,11
492.63
820.20
K47 .8
S7S .45
6n3.11
630081
488,53
6R6,26
714,02
741,79
769,58
797,37
825 ,1R
853,01
BRN,84
9nR,.67
936457
964 43R
992.24

107011

1047.9R

1075.84

11n3.74

113163

1159.52

1187.42

1215.32

1243.22

12771.1%

1299,04

13726495

13954.87

BETA STATES

MYseD, 5
4T¢40
19,32
=B,75

=364R2
=64 4R9
-92.06
=121 en4
=149411
=177+18
=2N0525
=233.37
®2614¢40

.?8Q047

*317.56

34561

*373.48

=601476

=429:83

'457.°0

485,97

*514en4

=847e¢12

«8Tne19

=598,476

»h26433

654,440

«AB2 4R

710,55

=738 ,A2

w76k 4,R9

794,76

=822,R4

=~RS0,91

«RT8 3R

=307.05%

*935412

=963+20

=091 .27

“1019¢34
=104744]
«1n7S«48
110356
w]131e¢63
=1159%«70
«1187.77
=]1215.R4
»]1243492
127199
=1300e06
«]1328413
=1156420

MIi=0,%
“142.,19
166,23
~157.6R
«174,02
-19‘0.{\7
-216,39
240420
'265000
“2900“9
-316.48
=342,R3
-369056
'306010
«623,70
'450.‘“
=477 .69
«505.n2
=532.43
=559,90
'587oa2
614,99
=642.A0
670476
-697,.91
-125'60
=-753,32
«781,n6
-AN8 R}
=A36 .58
-864 .37
«R%2 .17
-QIQ.QR
~947,R0
«975.63

=1003.47

“1031.32

.1059017

=1087.0n3

=1114.90
~1142,77
~1170.,65

-1198,54

=1226,42

«12564,32

=12R2,71

=1310,11
=1338.02

*1365,913

=1393,R4

.1‘21¢7q

=1449,.46

13




1k

GAUSS
Qo0
2040
6000
600
8060
1000
17040
140.0
160,0
180.0
200.0
22040
24060
26040
28040
3000
37040
340.0
36040
380.0
40040
42040
44040
4600
48040
5000
52040
56040
SA0a0
58040
60040
62000
64040
66040
6R0.0
7000
77200
764000
76060
TR0, 0
800.0
820,0
840,0
860,0
880,0
900.0
920,0
940,0
960.0
9“0.0
1000,0

TABLE VII

TRITIUM aTnoM 2P STATES

X
00000
0294
«587

+ KR
1e174
1e668
1¢761
24055
24348
24642
2935
3¢229
34522
3.R16
44109
4e40n3
44696
44990
542R3
Se8TT
SeR71]
6o 1h4
6e458
6781
Te0aS
7+338
Teh32
T«925
87219
84512
B8.R0N6
94099
94393
Q.6R6
9,498
10273
10567
10860
11.154
114448
114741
12.035
12,378
12.622
12.915
13,209
13,502
13,796
14,nR9
14,383
14676

ALPHA STATES

MIz0,.5
'10“2-25
«1032.93
-1023.66
=1014.38
=100%.15

=995,95
~986,79
©977,66
«968,56
=959,49
=950,45
©941.45
«932,48
=923,54
=916,63
=905.75
«896,91
-888010
=876,32
-870057
-861085
«853,17
.84‘051
~835,.89
~827.30
=818,75
=R10.22
801,73
=793,27
=784,84
-776.4‘
'768.08
-799,74
751444
-743.17
'73“093
«726.73
=718,55
-710.‘1
=702,30
=694 .23
-686,18
-678,17
«670,18
~662,23
=654,32
646,43
-638,57
~630,75
-622,96
-615.20

Mlx=0n.S
=1042425
-1040n95
-1037 .Zﬂ
-1011.83
=1025.34
=101R.07
«1010.34
=1002,31

«994,0R

985,72

“977.26

‘968.75

960419

~951,61

=943,02
~934.42

925,82

.017.24

“90R,66

*300e 09

-891055

.8R3002

~87445)

~866.02

'857-56

~84G9,12

-540.71

-832,32

-323-96

=~815,62

«8n7431

«7Q99,013

-7QOQ7R

=T7R2.56

-776036

~Th6.20

=TSR 06

=749.95

.741087

=733,82

-7?5‘80

717,82

-Tn9 .86

-701.93

694,03

=686,16

«678,32

«670,52

=662,74

=655,00

647,28

BETA STATES

M1z=0,5
=1n42425
«]1nSteh3
=106099
«1070e41
=1n079.86
=1n89,3%
=10984R6
=1108.41
=1117.,99
=1127eA0
1137724
=]146.9]
«1156¢62
-1166016
=1176413
=]185,93
=119577
«]1205¢R3
®]121S5e53
=1225e46
=1235.42
1245442
=]1255444
«176S+80
=1275.89
«1285%.71
=1295.87
=1306+08
=131Ae27
=]1326452
=13364480
134711
13957446
»]367.R4
=137R.26
-1388.69
=1399.16
=140966
«1420e20
«]1430,77
-154‘.17
-1452.00
-1462067
'1‘73.17
-1‘8‘.09
«1494 ,RS
-1§05.65
«1816,47
=1527,433
=183R,22
«]1549,14

MI=n,5
*1105445
*1106,R7
=1110,67
=1116.,75
'1123-03
=1130.58
=1138,66
-1147,11
-1 1‘;5.“2
«1164,72
-1173,78
=1182.96
=1192,74
“1201.62
-1211.06
=1220.58
~1230.15%
-1239,79
'12‘9-47
-1259.70
-1268.99
-12780“1
~1288.48
«129R,.59
“1308.54
-1318.,53
~1328,.55
'1338.62
-1348,72
=1358,.86
=136%.03
=1379.24
"3890“9
-1399.77
~14104n8
'1‘20.‘3
=1630,R)
=1441.73
=1451 .68
~1462,16
-1472,68
~1483,23
-1493,R1)
«1504,43
‘1515008
-1525,76
«1536,48
=1547,73
-1558,01
-1568 82
«1579,67




Moy the field required to induce the transition is
parallel to the quantization axis, while if Am = %1,

it is perpendicular to the quantization axis.

b. Magnetic Dipole Selection Kules

The magnetic dipole operator is of the form - E\ B
where B is usually an oscillating or rotating mag-
netic field, and where ﬁ may be an electronic or
nuclear megnetic moment. This operator can have
nonzero matrix elements only between states of the
same parity. This means, at least for the present

case, AL = 0.

For very strong fields we have AmI =0, t1 and AL =

bm, = Ams = 0; or Ams =0, *1 and 4% = Aml = AmI =
0. For intermediate fields we have AJ = 0, tl; AmJ
0, t1 and AmI = 0; or AmI = 0, t1 and AJ = AmJ =

F= 0, %l.

Again the magnitude of Am determines, in the same

0. For weak fields we have AF = 0, *1, Am

way as above, the parallel or perpendicular nature

of the field required to induce the transition.

Finally, we note that F = 0 >+ F = 0 is absolutely

forbidden for one-quantum transitions.

4, DISCUSSION OF THE GENERAL SPIN STATE SELECTION
PROBLEM
A wide assortment of methods exists which might be
used to polarize a metastable hydrogen atomic beam.
This is in contrast tc the problem of spin state
selection in an ordinary (ground state) hydrogen
atomic beam where only megnetic dipole transitions
between the various hyperfine components, or eadie-
batic reduction of the magnetic field, may be con-

sidered.

It is believed that a "three-level interaction,” in
which the applied fields may simwltaneously cause
transitions among three levels, offers the best so-
lution to the selection problem. This technique,
which was first demonstrated and explained by Lamb
and Retherford,5 and Lamb,8

the IASL ion source.

is the method used in
However, we first consider
some of the various other possibilities by which a

polarized metastable atomic beam may be produced.

In a magnetic field of asbout 575 G the B and e states
If a small (a few V/cm) trans-
verse electric field is epplied, the B-states are

coupled to the shart-lived e-states (the half-1life

become degenerate.

of the e-states is ~1.6 nsec) and decay repidly.

Thus one can obtain a beam of o metastables. Such
a beam 18 anelagous to the beam obtained in conven-
tional polarized ion sources after separation in a
quadrupole or sextupole field. That is, there is
100% electronic polerization but no nuclear polar-
ization. Such a beam could then be converted to a
partially polarized negative ion beam by adiabati-
cglly reducing the magnetic field to near zero be-
fore the H2> + A » K~ + A" reaction is allowed to
occur. However, these particles have a relatively
high velocity (~3 x 107 cm/sec) and thus a long
end carefully designed decreasing B field region is
probably needed. Drake and Krotkov,9 who first
used this method, attributed the fact that they
obtained only ~2/3 of the theoretical polarization
to an inadequate length in their B field transition

region.

To obtain increased polarizetion, one must turn to a
selective transition scheme of some sort. We first
consider the use of a magnetic dipole tramsition
between & particular o state and a particular B8
state in exactly the fashion often used in conven-
ticnel polarized ion sources. One finds, rowever
(see Secticn 6), thal the electric dipole matrix
elements are of the order of 1/a (= 137) times
larger than the magnetic dipole matrix elements.
Even though & line through an rf cavity can be
found where B is maximum and E is zero, for practi-
cel beam sizes the average E field will be suffi-
ciently large to make the electric dipole transi-
tion rate far exceed the magnetic dipole transition

rate.

We ask if these electric dipole transitions might
be directly employed for our purposes. For hydro-
gen or tritium atoms the a-f frequency separation
for thg two oy values is approximately 120 MHz;
this is to be compared with the natural width of
100 MHz for the f (and e) levels. Thus one could
possibly obtain a reasonsble® polarization with such
a transverse electric field transition. However,
both the beam intensity and polarization depend
critically on the rf power level. For deuterium
atoms the corresponding frequency separation is on-
ly about 18 MHz, so for this case the method is in-
feasible. The corresponding a-e (longitudinal
electric field) transitions are separated by one-

half the corresponding a-f separation; thus these
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Fig. 4. Schematic diagram of the a-d crossing; the
numbers correspond to the AmF required for a tran-

gition between the two crossing states.

transitions would be even less favorable.

It has been demonstratedlo

that at the a-d crossing
(~2360 G) a static electric field mey be used to
preferentially quench a single nuclear spin state.
For protons or tritons, only a(mI = -1/2) and

d(mI = 1/2) can be coupled by electric 8ipole radia-
tion. Since this transition violates the strong
field selection rules AmI = 0, AmJ = 0, t1, it is
"first-order forbidden." However, the remaining
transitions involve AmF > 1 and, because they are in-
compatible with dipole radiation, are more highly
forbidden. Figure L illustrates this situation for
both spin 1/2 and spin 1 nuclei. It is seen that,
in the deuteron case, two transitions are compatible
with Am_ = 1 (transverse electric field) and one

F
with Am_ = 0 (longitudinel electric field). Thus

one coufd selectively quench one magnetic substate
for spin 1/2 systems and either one or two magnetic
substates for spin 1 systems. Since the transitions
here are first-order forbidden, relatively large
electric fields are needed and serious loss will oc-
It has been

that, for protons, one might obtein 50%

cur through the a-f or a-e transitions.
estimatedlo

polarization with 25% a state survival.

Another proposa.l11 involves the use of a radio-
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frequency transition at zero megnetic field. The
251/2(F = 1) level may be coupled to the 2P1/2

(F = 0) level by longitudinel or transverse radia-
tion of the appropriate frequency. A small magnet—
ic field is permissible if both transverse and lon-
172 (F =
0) state is not appreciably quenched by coupling to
the 2P/, (F = 1) state because the frequency dif-
ference is as 236 MHz; the 281/2 (F = 0) to 2?1/2
(F = 0) transition is strictly forbidden. Thus,
1/2 (P = 0) metastable
beam. If the field were then adiabatically in-
creased to & high value, the metastable beam would
have 100% nuclear and 100¥% electronic longitudinal

gitudinel radiations are present. The 28

one might obtain a pure 28

polarization. This scheme, however, is applicable

only to protons or tritons.

5. QUANTUM MECHANICAL FORMULATION OF THE FOUR-
LEVEL PROBLEM
We consider only the four~level system a, 8, e, and
f since the 2P3/2 levels are sufficiently distant
to have no significant effect on our problem. In
addition, since we are working in e strong megnetic
field, the nuclear magnetic quantum number my is
conserved and we may therefore consider separately
each group of four atomic levels associeted with a

particular nuclear spin orientation.

For the amplitudes of the a, B, e, and f states, we
use the notation a, b, c, and d. We use w (with or

without subscripts) to denote an angular frequency.

The 8chroedinger equation may be written:

(B +H)y = 1n 2L,

where Ho is a time-~independent Hamiltonian whose
eigenfunctions satisfy the equetion Houn = Enun.
If the exact wave function is written in the form

—iEnt/ﬁ
v =z an(t) ue ,

it is easy to show that the coefficients an(t) must
satisfy the differential equations

i t
iﬁék = L Hin a e “n R

where

W = (Ek - En)/ﬁ .




and

' fu* H' udr -
Hy fuk H' u dr

For the four-level case, these equations mey be
written out explicitly as:

- iw Bt
iha ( 0 H.e ¢
aB
, inat
inb H! e 0
Ba

= imeut imeﬁt
A 1 '
ifhe Heae Hese

jw, t iw, t

el ' fa ' 8
}ﬁdJ _Hfae HfBe

where the damping terms -iyc/2 and -iyd/2 have been
added to account for the decay of the e and f states.
Except for the damping terms, the above matrix is
Hermitian. The a-B and e-f transitions may be in-
duced only by a transverse magnetic field; the a-f
and B~e transitions may be induced only by a trans-
verse electric field; and the a-e and B-f transi-
tions may be induced only by a longitudinal electric
field. '

We assume & longltudinal oscillaeting electric field
(angular frequency w), with an associated transverse
oscillating magnetic field, and a transverse static
electric field. The matrix elements may then be

written in the form

H! = HMcoswt
Ba
H! = HAM'cosuwt
fe
r 1 B iw ,t
ia o] M¥* o of cos wt
i —iwaBt
ib Me cos wt 0
=
-iw_t -iw, t
ic Re oe cos wt Ve Be
~iw .t ~iw, .t
L1d vt e o R' e BF cos wt

iw iw ft_ r ]
H e %€ e ° a
ae af
iw, t iw, .t
Be 8f
1 )
HBee Hsfe b
iw _t
s ' ef
iy/2 Hefe e
imfet
H! e -iy/2 d
fe 4 L d
B;a = HRcoswt
H}B = HR'coswt
HéB = &V
Hé,a = ay! .

where M and M' represent magnetic dipole matrix el-
ements, R and R' represent longitudinal electric di-
pole matrix elements, and V and V' represent trans-
(The nota-
tion R and V is selected since R and R' will be

verse electric dipole maetrix elements.

associated with a radio-frequency electric field,
end V and V' will be associated with & static elec-
tric field.) These matrix elements are discussed
in Section 6; for the present we merely observe

that the magnitude of dipole matrix elements is di-
rectly proportional to the relevant applied field.
Note that the unprimed matrix elements relate to the
e level, and the primed matrix elements relate to
the f level.

In this notation our equations become:

iw t iwaft
R* e °€ cos wt AR a

iw, t iw, t
V¥ e Be R'* e Bt cos wt b

1w £

-iy/2 M'*% e cos wt ¢

-iw b
M' e cos wt -iy/2 J _d J .
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The equations are used in this form for the numeri-
cal integration studies discussed in Sections 8§ and
9. However, the effect of the f state on the sys-
tem is not large--it merely causes & slow overall
decay of the metastable beam. For our first dis-
cussion of the system, we neglect the f level ef-

fects.

Also, except in the numerical integration studies,
we follow the standard practicel2 and drop the term
in cos wt = % (el + Uty nich is incapable of
resonance. (We note that this approximation cannot
be made for both frequencies if one uses an oscil-
lating transverse electric field as well as an os—~
cillating longitudinal electric field, since then
at least two frequency terms can elways resonate.
In fact, one then obtains interference between the
two contributions.) With these approximations the

equations become:

15- { 0 M ei(m"“@'—m)t
i) =] u e_i(w"s_w)t 0
_15_ | = e_i(wue -w)t v e—iwaet
These ere the equations given by Lamb.8 In Section

T we follow the method indicated by Lemb to obtain
an analytic solution to these equations for the
special case of constant field magnitudes during the
interaction time.

6. MATRIX ELEMENTS
Neglecting the nuclear hyperfine interaction, the
wave functions which describe the n = 2 states of
the hydrogen etom may be written in the form given
in Teble VIII.* The coefficients € - €, can be ex-
pressed as follows. Define the dimensionless para-
meter £ = uoB/AE, where AE is the fine structure
splitting (10,968 MHz).

of about 7800 G; thus, as far as fine structure is

(£ becomes unity at a field

concerned, we are interested primarily in the week
field region. Accordingly, Table VIII is subdivided
into the weak field groups (where J and mJ are good
quentum numbers) elthough the wave functions are

exact for all fields.) We may write
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3 -
€, = %(l -6)
where
§, = (g +1/3)/V1+2¢/3 + e
and
§ = (& -1/3)/V1-28/3+ ¢

The quantities §, 6+, §_, and €, — €, are tabulated,

i(w e -w)t

R¥ e o a
jw, t
y* e B¢ b
-iy/2 e .

L
s

for various magnetic fields, in Teble IX. We note
that, for zero field, £, + 1/3, § + -1/3 and €, -
In that case, the coefficients in

Table IX become the usual Clebsch-Gordan coeffi-

€} become unity.

cients which couple angular momenta 1 and 1/2. For
large fields, £+ + 1 and &

+ 1; thus g, and g
become zero while € +J§-3_ and c3 +4]3.

In this

case, we obtain the wave functions for which £, m

l)
s, and m  ere the appropriate quantum numbers.

We now consider the effect of the nuclear hyperfine

* The values of €, - €, Vere obtained from Bethe
13 Section 46. The Clebsch-Gorden co-
efficients and angular functions used throughout

and SBalpeter,

this section are, however, those of Condon and
Shortley.lh
Ref. 13 may be used if account is taken of the

The tables of matrix elements given in

(-l)m difference in phase conventions for the

spherical harmonics.




TABLE VIII

n = 2 Hydrogen Atom Wave Functions in & Magnetic Field

Multiplet State my Function
* 3/2 Rortyy M
2P3/2 ° M E€1R21¢10 (4) + E‘zﬁal“’n (+)
¢ /2 E‘ Far¥yy () + thRzl“’lo (4
¢ ~3/2 Rop¥y g (V)
2P/ ) M -E’E?Rﬂwlo ) »EEIR2le_1 ()
§ -2 —EEhRQle-l (4) + J%:‘3R21‘”10 (+)
25172 ¢ 1/2 Roo¥oo (*)
’ /e Roo¥oo (V)
NOTATION

and (+) are electron spinors

1t (1 - 3)
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TABLE IX

Factors Required for the Computation of the Hydrogen Atom Wave Functions

in an Arbitraery Megnetic Field

Fleld 3 [ § € € € €
(¢) + - 1 2 3 4 -
0 0 ~ .3333 -.3333 1 1 1 1
390 .05 .3833 ~-.2833 1.016 .983 1.034 .967 -
780 .1 .4333 -.2333 1.031 .965 1.068 935
3,900 .5 .8333 -.1666 1.117 872 1.113 .T12
7,800 1i° 1.3333 +.6666 1.167 .563 1.538 .525
39,000 5.0 5.3333 4,6666 1.220 .122 1.72% .152
78,000 10.0 10.3333 9.6666 1.224 .084 1.730 .111
interaction. The megnetic fields of interest are which connect the B to the o and the f to the e

in the region of 500-600 G.
defines the strong and weak field regions (with re-
spect to the hyperfine interaction) is X §5u°B/AW,
where AW corresponds to the zero field hyperfine
splitting. The magnetic field at which X is unity

varies from ~15 to

The parameter which

~ 65 G for the cases of present
interest (see Table I) and we are thus interested in
the strong field region as far as the hyperfine in-
teraction is concerned. This means that the appro-
priate wave functions which include the nuclear spin
are of the form given in Table VIII multiplied by a
nuclear spin wave function which corresponds to a
particular m.. (These are only approximately cor-
rect wave functions; in fact, a small amount of nu-
clear spin component of other than the predominant
mp value will be present. The situation is anala~
gous to the situation discussed above for the fine
structure wave functions, if f, 3, and T replace 3,
i, and §, The a-d crossing techniquelo discussed in

Bection U4 makes use of this fact.)

Turning to the evaluation of the matrix elements
which connect the various states, we assume that my
is a good quantum numberj i.e., that we may use
electron wave functions of the form given in Table
VIII multiplied by a nuclear spinor. The selection
rule Am.I = 0 holds for the transitions of interest
80 the nuclear spin wave function is omitted in the
following discussion. Further, we assume that the
direction of the stetic megnetic field defines the

+z axis of the system.

We first consider the magnetic dipole matrix elements
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states. The perturbing interaction is

H' = - B' = —gzuof' B - ssvog 1

where, neglecting radiative corrections, 8 = 1
and g, = 2, and where u, is the Bohr magneton. We
may write:

LBt =(m; + B (x, - it ) + %(B] - 1B))
(2, + i!y) + B2 EXBLL +IB'L + Bt .

Using this expression together with the similar
expression for 8. B', the B+u matrix element may be

written:
Bl = -uojﬂﬂeowgo(f)[%B; (g2 + g;8)

1
M %B— (g££+ + 8ss+) + Bz(glzz + gssz)]

R20w00(+)dr .

The operators 2+, L , and £z obey the equationsl3

x+¢£m£ = /(o= m))(+ m, + 1) *zmz el
Q_wunn = V(2+ ml)(l— m, + 1) *!mg _1 and
2 =m, .

Z Emg L le

The operators 8., 8_, and s, obey identicel equa-




TABLE X

n = 2 Electric Dipole Matrix Elements

Units: ea.
Transition Am Matrix Elgpent Matrix Element: of
of eE o1 xE YE 2E
x Y A
a+a +1 -3E_/V2 -3E //2 3E /Y2 0
g +d -1 3E/V2 3E /Y2 3iEy//§ 0
a+b 0 /8e.E 0 0 /e . E
17z 17z
g +c 0 /géhEz 0 o /B¢, E,
a+c -1 3/2(-:3E+ 3/253Ex V3/2831Ey 0
8 +b +1 - 3/2€2E_ - 3/2€2Ex 3/2621Ey o]
a+d -2 o} 0 0 0
B+ a +2 0 0 0 0
a>e 0 —/§E2Ez 0 0 —/§k2Ez
B+ f 0 +/§€3Ez 0 0 +/§é3Ez
a+f -1 -/§éhz+ -J§£hEx -/§khiEy 0
B+e +1 -JgklE_ -/EElEx /EéliEy 0
tions (where s = 1/2, o = £1/2). In spinor nota- Héf = -uoBJ/3 .

tion, only the following operations yield non-zero
results:

s, (4) = (1)

s_(4) = (+)

s, (1) = %(1) :
5, (+) = 35(4)

For the present example, the £+, £_, and lz opera-
tors yield zero and the only contribution to the in-
tegral is from the kgsBLS+ term. We thus obtain
H&B = -%gsuoBl = -uoBl. In the notation of Section
5 this corresponds to M = —uoB;/h or M = -iu°B§/h
for oscillating fields in the x and y directions,
respectively.

The matrix element connecting f to e can be similar-
ly evaluated; the result is:

Bl = [-g(eyey, + €165)/3 + g eqe4/6]u BL .

For the magnetic fields of interest here, €13 €5

€31 and €, 8re very near unity. If it is assumed
that they are exactly unity, we have

(This limiting result could have been readily ob-
tained by considering the effective interaction to
be -85p uo3' B together with the JmJ representa-
tion of&the state.) In the notation of Section 5,
this result corresponds to M' = -suon/3h or M' =
—ieBy/3h for oscillating fields in the x and y di-
rections, respectively, where e is given by:

€= gl(eash + €1€3) - 588283/2 .

We note that e=1 for field strengths of present
interest. Numerically the quantity uo/h is 27 times
(1.401) MHz/G. Note that M and M' have units of
angular frequency.

We now turn to the electric dipole matrix elements.
In this case the perturbing part of the Hamiltonian
is of the form H' = eB - r where e is the electronic
charge, ﬁ an electric field strength, and ; is the

electron position vector.

For example, the matrix element which causes the
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transition o + e may be written
* #* -
] .
Hyy = SlegRouo(8) + e Rypuy ()] - 7]

Rzowoo(ﬂdr .

Noting the orthonormality of the electron spinors
and expending eﬁ -;, this becomes

1 »* b3
Hi, = €p¢ fRy WA [, x_ + 4B x, + E z]R g0, dT .

If we use the following facts

z = rcosf
¢
+
x_= reinge *?

at = resineded¢ N

x, = rsinde’

we obtain

2n W
= 3
Hie czez Roy ()R (x)r drl _L io

(Ezcose + kE+sin6e_l¢ + %E_sin6e1¢)woosined6d¢.

The radial integral’d
is the Bohr radius.
evaluaeted either directly or by reference to ta-
13
bles.

hes the velue 3/350, where a,
The angular integrals can be

In this case, only Ezcose survives the ¢
integration, and we obtain

t X o
Hue /gﬁzeaoEz .

In Table X the matrix elements are given with the
assumption of the Condon—Shortleylh conventions for
the vector coupling coefficients and wave functions.

Any modification of sign in which €, and €35 or €

end €), are changed simultaneously, ir in which thi
overall phase of a wave function is changed, pre-
serves the orthogonality and eigenvalues of the

functions and is therefore acceptable. Thus, for
the 281/2 - 2?1/2 trensitions, many possible con-
sistent sets of signs for the matrix elements are

possible.

In the notation of SBection 5, the electric dipole

matrix elements may be written
R = -/§E2 ea Ez

R' = /§E3 ea E ,

22

vV = -/EEleaoEx or -/§EleaoiEy
t = o
vt = /§EheaoEx or /§EheaoiEy N

depending on whether the transverse field is elong
the x or y axis. For the magnetic fields of inter-

est, €, -8, di ffer from unity by only a few per-

cent. Neglecting these small differences, we may
write
R' = -R¥ and V' = Vv* |

This form is used in some of the later discussion.
In fact, any relative signs between the matrix ele-
ments such that arg(R/V) = -—arg(R'*/V'¥*) will re-
sult in identical answers for any celculation which
involves only these matrix elements.

Numerically, the quantity V3 eao/ﬁ is given by /3 x
(1.60206 x 1079 ¢) x (5.29172 x 207 em) x 107/
(1.05443 x 10727 erg-sec) = 13.9257 (cm/V) MHz.

Note that the quantity V3 eaoE/ﬁ, where E i8 an elec-
tric field strength (V/cm), has the units of angular
frequency.

T. ANALYTIC SOLUTION OF THE THREE-LEVEL PROBLEM

For the case of interest, where the magnetic field
is such that the B and e levels are nearly degen-
erate, the f level has little effect on the system.
Thus, to good approximation, we mey neglect its
presence. (The quality of this approximation will
be examined in Section 8.)

The equations which characterize the three-level

system are then

i(8+w, )t
id =M% p eidt + XR* c e Be
iw, t
ib =M a e_iat + V¥ c e Be
-i( 6+m8e) t —lug b
id=3R ace +Vbe - X(iye) ,

where we have defined the angular frequency differ-

ence § = w , - w.
a

B

Let us first consider the easily-solved special
case which corresponds to § = Q0 and wBe = 0, In
other words, we assume & magnetic field strength
such that the B and e levels are degenerate {cross-—
ing) and an rf frequency such that w/2r = muB/2n
(resonance). Note that we are speaking of a partic-

ular nuclear spin magnetic quantum number, since




simulteneous resonance and crossing occur at & 4aif-
ferent magnetic field (and corresponding freguency)
for the various m  velues. We also neglect M (for
the reasons given in Section 6).

With these assumptions the equations become

ia = XR¥*c
id = V¥e
id = %Ra + Vb - X(iye) .

If one differentiates the third of these equations
and substitutes the first two equations into the
third, the result is

é’+¥ﬁé+P2c=0 .

where P2 = 3R*R + V*V. The general solution of
this equation is
~u.t -uzt

1
c = Cle + 02e N

where u, and W, are the two roote of u2 - 5y + P2

= 02

2

"

_ R 2
NPRRZER/CZILES o
To evaluate the constantsy we assume some initial
conditions. For a particle initially in its a-
state, a =1 and b = c = 0 at t = 0; this implies
that ¢ = % iR at t = 0. Applying these conditions,

we obtain:

o = iR e'”lt _ e'“zt
Tn ’

where n = /(y/2)° - P?°. This solution is valid for

all values of P2 except the critically damped case
P2 = (y/2)2; for this case ¢ = -%B te-(Y/h)t. The
solutions for ¢ may be put back into the equations
for & and B to obtain

a=Ay+ -lgiR*fcdt
By + -iV*fcdt s

where A, and B, are integration constants. We ob-

o’
[

3 3
tain:
~u,.t -u.t
R¥*R R¥*R e 2 e 1
e=1-Y% 5 T W
L4p n 2 1

-\t -yt
b__V"R+V"R(e2 _el)
SCARTI W My

After a sufficiently long time the exponential
terms decay to zero, since the reel parts of My and
u2 are positive for all values of P2. '

Thus, our esymptotic solutions are

g + eV
LR*R + V*V

V*R

® > LRFR + VAV

c+0 .

That is, an equilibrium population of the a and B
states is established. Since we are dealing with
amplitudes, a definite phase relation exists be-
tween & and b; i.e., we have a coherent mixture of
the a and 8 states, while the amplitude for the e
state has decayed to zero.

We note that our asymptotic solutions satisfy the
condition »Re + Vb = 0. From inspection of the
equations, it 1s clear that we have a solution if

¢ =¢& = 0. The physical nature of the phenomenon is
one of interference; the reletive phase of the
transition matrix elements is such that contribu-
tions from a and b to the c state population de-

structively interfere; i.e., %Ra + Vb = 0.

We now turn to the solution of the general three-
level equations following the method indicated by
Lamb.8 First, let us generalize the equations
slightly to allow for an arbitrary phase for the rf
field at t = 0. That is, we assume

H' = H'® = &R cos{wt + §_) ,
eq ae o

vhere 60 is the phase at t = 0. This may be written
as

ié -16 .
%-[b(Re o)eiwt + n(Re o)e-lmt].

We may perform a similaer decomposition of M. Drop-

ping the negative frequency term, as before, and de-
is is
o

fining Re = Ro and Me = Mo’ the equations re-

main the same except R *-Ro and M *'Mo:



i(s + wBe)t

. isét
* *

ia = Ro ce + %Mo be

iw, t
ib =Vt ce Be ™ , %Mo a e-ist

-5(8 + w, )t -iw, t
i = R ae Be L vbe Be

- ¥(iye) .

Following Lamb,8 we assume a solution of the form

-u t -u.t -u t
. 1 2 3
a Ale 5 + A3e

—ult -u2t

b = (B,e + B_e + B_e

1

-u3t ~-18t - iwset

c = (Cle + C.e + C.e Je .

Substituting this form into the equations and equat-

ing coefficients of e—ult, for exemple, we obtain

" " [ 2]
1ul Mo Ro Al

- * =
Mo iul [ v Bl o,
Ro v iul-é-wae—kiYJ Cl-J

with identical equetions holding for Hay and u3. We
use the general subscript k from here on since the
following discussion applies to Hys Hps and u3. For
any but the trivial solution Ak b Bk = Ck = 0, the
determinant of the coefficients must vanish; thus,
the three values of u are the roots of the complex

cubic equation:
iny (i, - 8) (4w, - 6 - Wga = iy)
Latt ) #*) - #* -
+ (MYV*R  + MOVRO) R R* (iu, - 6)

- # - * - - - =
\a'4 (iuk) M M¥ (iuk § = wgg kiy) = 0 .

This may be written in the form

3 2
o+ Py T+ Qu +R=0,

where
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P= -i(AaB + Aae)

= y# * * -
Q = VAV + X(R¥R | + M¥M ) Bygboe

= Lafg g * * #
R 1(M°v R+ M_VR¥ !n(RoRoAm8 + MoMoAae) ,
and where AGB = -8 and Aae = -6 - wBe - My,

Such a complex cubic equation mey be solved algebra-
ically as follows. Define B * 2+ P/3. The equa-
tion for z is then z3 + az + b where a = Q - P2/3
and b = 2P3/27 - PQ/3 + R. Then a solution for z

is of the form z = u - a/3u, where u satisfies the
equation w3 = -b/2 # (b/2)2 + (a/3)2. All the
operations defined are valid for complex numbers;
however, we find six values for u of which three
lead to redundant solutions. To improve computation
precision, we select the + or - sign in the equation
for u3 according to which gives the larger esbsolute
value. It was found necessary to use double-
precision arithmetic to achieve satisfactory accu-
racy for the values of the coefficients of interest
The FORTRAN IV code for
this procedure is included in Appendix A.

to the present problem.

Returning to the matrix equation, once we know thet
the determinant of the coefficients is zero, we may
use any two equations to relate the quantities Bk
and Ck to Ak’ which we will assume to be erbitrery.
(That is, Al, A,, and A3 will be taken to be the
three independent constants characteristic of the
solution of & system of three first-order differen-

tial equations.) One finds

B, = -3, [M (du - 6 - Wag = %iy) - R V*]/D,
C. = -lsAk[Ro(iuk -8 - Mov]/Dk .
where

D, = (i, - 6 - Yoo -8iy)(iuk - §) - vey |

Thus, defining Bk = ekAk and Ck = GkAk’ our general
solution of the equations 1s of the form

-u t
al=]1 1 1 Ale 1
_uat
b € € c3 A2e
c

_ut
3
2 63 A3e .

n
[




To evaluate the coefficients Al, A2, and A3, it is
necessary to assume some initial conditions. If
there is no e-state component in the initial beam,
wve may achieve sufficient generality by assuming
each of the initial conditions a = 1, b =0, ¢ =0
and a = 0, b =1, ¢ = 0. The solution to the prob-
lem corresponding to & beam which conteins an inco-
herent mixture of o-state atoms and B-state atgms
can then be written by combining these solutions
eppropriately (i.e., by an average over initial
states). We could use some other set of spinors as
a basis system; a natural basis system for this
problem will be discussed later. For a = 1, b = 0,
and ¢ = 0 at t = 0, the solution of the linear
equations yields

&

A2 (5361 - 5163)/D

(5263 - 2362)/D

A3 = (8162 - 8261)/D s

where

D= (5263 - 5362) + (e36l - 5163) + (9152 - 5261).

For a =0, b=1, andc = 0 at t = O we obtain

(52 - 63)/D

>
|

» = (85-6))/D

>
|

3= (61 - 62)/D .

The present solutions have been eveluated numeri-
cally by computer methods (Appendix A). In summary,
the assumptions made in obtaining these solutions
are:
a) the three-level approximation equations are
adequate,
b) Ry, V, and M_ are constant during the inter-
action time,

¢) the effect of the e 1%

term (the Bloch-

Siegert term) is small.

These restrictions will be relexed in the numerical

. Integration results to be described later.

We note that the initial phase of the rf field plays
no role in the solutions. Accordingly, we will re-
fer to R and M, not Ro and Mo’ in most of the fol-

lowing discussion. The coefficients Ak’ Bk’ and C
are slowly varying functions of the angular fre-

quency difference § = waB - w. The character of

the variation of A3 and 83, the coefficients of the

most slowly decaying term, depends on the sign and
magnitude of wBe at the magnetic field for which §

k

= 0; l.e., to the difference between the resonance
and crossing frequencies. Figure 5 shows the mod-
ulus and argument of A3 for m = 0 deuterium atoms,
as a function of B - B (where B = B(6 = 0)), or
§/2n, for the following 3 cases:

Case w/2n B w, /27 IR | [v|
(MHz) (g) Be (Mgz) (MHz)

1 1471.90 525 89.95 250 250
1611.99 575 -1.57 250 250

3 1752.09 625 -92.53 250 250

The numerical values of the matrix elements (|R°|

= 250 MHz and |V]| = 250 MHz) correspond to a longi-
tudinal rf field of 250/(13.93 x .975) = 18.41 V/cm
end to & transverse static field of 250/(13.93 x
1.021) = 17.58 V/cm. The particular frequencies
chosen correspond to a resonance ~50 G below
crossing, epproximately at crossing, and ~50 G a-
(The exact field for which Wge =

0 for m. = O deuterium atoms is 574.14 G, for

which maB/2n = 1609.57 MHz.) Since the line shape

depends only on wBe/2n, the curves in Figures 5-8

bove crossing.

apply to any of the hydrogen, deuterium, or tritium

3/2% (MHz)
IAP 2%

@

I

o
o °o S
S 8
& =
< 3
~ %
2t <
" o 15

, (. \ N
-2 [ 2 4 ] [} 10
B-8, (GAUSS)

&P
L
o
&)

Fig. 5. The variation of |A3| (solid curves) and

arg A3 (dashed curves) for cases 1, 2, and 3. One
of the |A3| curves is terminated at -8 G where Re

(u2) becomes smaller than Re (u3).
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18,1 7B e-0l

ARG [By/B4(8+0)] (DEGREES)

:-m (GAUSS)
Fig. 6. The variation of |B3| (solid curves) and
arg B, (dashed curves) for cases 1, 2, and 3. One
of the [B3| curves is terminated at 8.5 G, and a
gecond curve at -8 G, where Re (u2) becomes smaller
than Re (u3).

3727 (MHz)

B-8, (GAUSS)

Fig. 7. The variation of the real part (solid
curves) and imeginary part {dashed curves) of My

(in MHz angular frequency) for cases 1, 2, and 3.

substates. However, the values of w/27 and B°
given above are specifically for m, = 0 deuterium
atoms. ©Since, for a given fixed frequency, Uge
will be different for the different substates of
the species being polarized, the line shape corre-
sponding to each will be slightly different. The
cases 1 and 3 chosen for illustration are probably
a little too far from crossing for reasonable sep-
aration of deuterium megnetic substates; a range of

+35 G from the crossing field would appear to be
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Fig. 8. The "transmission" Iala (upper three

curves) and [b[2 (lower three curves) evaluated at
t = 0.4 psec, for cases 1, 2, and 3.

acceptable. For hydrogen or tritium atome, where
the line shape is of little consequence, a much

larger difference is acceptable.

Figure 6 shows the modulus and argument of B3 as a
function of B - Bo or §/2x, for the same three
cases. Note that the slopes of the lA3| and IB3|
curves are opposite in sign for a given Wge
Figure T shows the real and imeginary parts of the
small decay constant u3, as a function of B - B° or
§/2n, for the seme cases. Figure 8 shows the trans-
mission |a|2 and lb]2 after a time t = 0.k usec (12
cm). At a time as large as this, only the g terms
survive, so
—u.t
al? = lage 32
—u3t

0] = [Bge 3|2
The opposite shift in the apparent resonant field
for |a.|2 and [b|2 transmission is because of the

opposite slopes of the |A3] and |B3| curves noted

above.

It is relevant to inquire about the transmission of



TABLE XI from Figures 5-7T.

1. Tr missi £
snsmisslon of Unselected Substates We now write simpler expressions for the special

I&|/1V] *IRla + [Vl2 !A3‘ Re.(u3) case of resonance (6§ = 0). As noted above, the
Units: (125 MHz)a ey coefficients do not very rapidly, so some state-
Angular Frequency (usec™) ments about the general nature of the solutions at
0.5 2 1.03 5.3 resonance will apply approximately to the off-
1.0 2 1.15% 20.1 resonance solutions. We neglect the small matrix
1.5 2 1.39 43.2 element M. For this case, the cubic equation be-
0.5 5 .98 5.5 comes
1.0 5 .90 1T.4
15 > |13 26.5 - (y/2 - iwee)uz sPPu=o0,
0.5 10 .95 3.3
i:g ig :2% 13:3 where P° = %RR¥ + VV* gs before. The roots are
' My o= (v/h = dug /2) & Ay - ug /2)2 - B2
2. Transmission of the Selected Substate ’
I|/v] Iag] b=,
0.5 0.9412
1.0 0. 8000 which are seen to be consistent with the solutions
1.5 0.6k00 obtained above for Ve = 0.

Inserting these values for the My in the general

atoms with other than the desired my quantum number. relations, we obtein

For hydrogen or tritium atoms, this may easily be

m
n

x = PERV*/D
made zero. For deuterium atoms, some care must be and .
taken in the choice of parameters. If the optimum Gk = ‘%iRvk/Dk ,
driving frequency of 1609.5T MHz is chosen, the
transmission curves for mp = 1, 0, and -1 are highly where
symmetric and therefore almost identical. The rele- Dk = iuk(iuk - Wge T iy/2) - v*v

vant gquantity is the transmission of a given state

2
- - - V#
when the magnetic field is tuned to an adjacent Vg + 2“k (v/b iwse/z) VI

state. For example, for w/2m = 1609.57 MHz, the
resonant fields for mp = 1, 0, and -1 deuterium at- If we define £ = (v/b - iwee/2) and n =
oms are 564.48, S5Th.1k, and 583.96 G. In the case

of mp = 0 deuterium atom selection, we are inter-

2 2
/{Y/h - imee/2) - P we can tabulate the D, ¢,
ested in the transmission of mI = 1 and mI = 3 atoms and 6k as follows:

at 574.1% G; i.e., at 9.56 G above and at 9.82 G

k Hye Dk & Gk
below their respective resonant fields. The rela- =
+ * * -
tive contributions from either of these may be de- 1 ¢ n R*R/4 ave/R 2i(¢ + n)/R
- * * — -
termined from Teble XI. Thus, for |R| = [V| = 250 2 f-n RER/b 2V*/R 21(& - n)/R
3 0 -Vey -R/2V o]

MHz, the fractional contamination of m = O states

with m, = 1 states would be ]0.90e—l7’ht/.80|2 which,

The determinant D may be written
for t = 0.4 usec, is about 10 ~. TFor other driving

frequencies the selection is less favorable; however, D ==~ gig:n 1+ %%%V) .

as mentioned above, the selection would appear to be

reasonably satisfactory for a freguency range of For the initial condition a = 1, b = 0, ¢ = 0, we
~1100 MHz (corresponding to ~35 G). The quality obtain the coefficients

of the selection in these cases can be estimated
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=

A By

#*
1 E—g (1 - 5-) =
8p n L4p n
8p® n up? n n
% - #*
3 v2v sz o .
P 2p

For large times, the solutions are therefore

#* —~RV#*
P 2P .

Note that a and b have asymptotic values identical

to those obteined if w, = 0j thus, only the tran-
Be

sient terms are affected by wBe # 0 for 6 = O.

* For frequencies slightly off resonance, neglecting
the slight variation of the coefficients, we have
_gyx ~(ug + 18)t

2 € >

ay “Hat
ad !EX e 3 ba
P 2P

where 3 is a repidly varying function of § (see
Figure T).

For the initial conditions a = 0, b =1, ¢ = 0, we
obtain the solutions

k A By S
# *
1 Ha-dH Ha-H X
1P Lp "
* * -
2 1% (1+% V—Z (1+% —;1
bp n 2p n n
R*V R*R
3 - 2
2P 4p

From the symmetry of the equations, one can see
that the relation between the sets of coefficients
for the two assumed initial conditions must involve
only the simultaneous interchange of R/2 with V and
the definition of Ak with that of Bk'
In general, the roots of the cubic equation are
complex. The imaginary components correspond to
(time dependent) energy shifts from the unperturbed
eigenenergies characterizing the wave functions
given in Table VIII. Consider, for illustrative

purposes, the situation at crossing and resonance
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where

o= 1/ 2 Ay/m? - p?

N u3 =0 .

*1
It is clear that if P2 < (y/4)2, all the roots are
real and the unperturbed energies remain correct.
If, however, P2 > (y/h)a, k) and u, will have an
imaginary component and the level energies will be
shifted. This is related to the phenomena of level
repulsion in which, under certain circumstance, the
energies of two states as a function of megnetic
field do not cross, but rather repel, and thus in-
terchange roles.8 This effect does not result in a
shift of the position of the three-level resonance,
however, since this is determined solely by the
frequency at which Re(u3) = 0, and this frequency

will correspond* to § = 0 for any value of w, or

P°. For & 0, u, has an imeginary componense(aee
Figure 7) and the slowly decaying states o and B
may be regarded as slightly energy-shifted. The
energy shift of the rapidly decaying components has

no significance at large times.

Figures 9-11 illustrate the time dependence of Iala
and |b|2 for the cases 1, 2, and 3 defined above
(initial conditions a =1, b = 0, and ¢ = 0). Fig-
ure 9 corresponds to resonance (8§ = 0), Figure 10
corresponds to 1 G off resonance (§/2n = 2.8 MHz),
and Figure 11 corresponds to 9.6 G off resonance
(6/2r = 26.9 MHz). The last value is chosen for
presentation since 9.6 G is approximately the dif-
ference in magnetic field values at which the vari-

ous deuterium magnetic substates resonate.

Figure 12 illustrates the time dependence of |a|2
and Ib|2 at resonance (& = 0) for the cases 1, 2,
and 3 but for the initial conditions a = 0, b = 1,
and ¢ = 0.

Figures 13-15 show the transmission of hydrogen

metastable atoms versus magnetic field for an rf
field of fixed frequency and strength (here taken
to be 1610 MHz and 18.41 V/cm, respectively) and

for several values of the transverse field (8.79,

#As has been noted ebove,the apparent resonant fre-
quency scmetimes differs slightly from § = 0. This
is due only to the slow variation of the coeffi-
cients |A3| end IB3| with frequency, and is unre-
lated to the energy shifts presently under discus-
sion.
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Fig. 9. The variation of Iza.]2 and |b|2 vs time for
B =B (§=0) with initial conditions a(0) = 1,

b(0) = ¢(0) = 0 for cases 1, 2, and 3.
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Fig. 10. The variation of |a|® and |b|2 vs time for
B-B_ =-10G(6/2n=~ 2.8Miz) vith initial condi-

tions a(0) = 1, b(0) = ¢{(0) = 0 for ceses 1, 2, end
3.
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Fig. 11. The variation of |a|2 and |'t>|2 vs time
for B - B = ~9.6 G (8/21 ~ 26.9 MHz) with initial

conditions a(0) = 1, b(0) = ¢(0) = 0 for cases 1,
2, and 3.
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Fig. 12. The variation of ]a.l2 and [b[2 vs time
for B = Bo'(s = 0) with initial conditions b(0) =

1, a(0) = ¢(0) = 0 for cases 1, 2, and 3.
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Fig. 13. The transmission of hydrogen'metastable

atoms (|a.|2 + [b|2 and ]a[e) vs magnetic field for
1610 MHz; |R| = 250 MHz, and |V| = 125 MHz. The
solid curves correspond to initial condition a(0)
= 1 and the dashed curves correspond to b{0) = 1.
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Fig. 1. The transmission of hydrogen metastable

atoms (la|2 + |b|2 and |a]2) vs megnetic field for
1610 MHz; |R| = 250 MHz, and |V| = 250 MHz. The
solid curves correspond to initial condition a(0)
= 1 and the dashed curves correapond to b(0) = 1.

17.58, end 26.37 V/cm). The peaks at different mag-
netic field strengths correspond, of course, to dif-
ferent nuclear spin substates. An interaction time
of 0.4 usec {corresponding to a cavity length 12 cm)

is assumed. The s0lid curves correspond to an ini-
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Fig. 15. The transmission of hydrogen metastable

atoms ( a.|2 + ]b[2 and |a|2) vs magnetic field for
1610 MHz; |R| = 250 MHz, and |V]| = 375 MHz. The
80lid curves corréspond to initial condition a(0)
= 1 and the dashed curves correspond to b(0) = 1.

tial pure alpha-state beam (a(0) = 1) and the
dashed curves correspond to & pure beta-state beam
(b(0) = 1). For the highly symmetric case (¥|R| =
{v]) shown in Figure 13, the two initial conditions
result, except in the "tail" region, in identical
solutions. The quantities ]a.|2 + lb]2 and Ial2 are
plotted in each case.

Figures 16~18 show the transmission of deuterium

metastable atoms for the same cases and conditions.

Several observations about the general nature of
the solutions may be made from the graphs:
1. For fixed |R|, both the height and width

of the lines which correspond to & a(0) =
1 increase with increasing [V|. (For fixed
[V|, the height and width of the peaks
which correspond to b(0) = 1 increase with
increesing [R|, although this is not shown
here.) The heights, of course, vary in
the menner stated previously, and depend
only on |R|/|V|. For the case %|R| = |V|,
the a(0) = 1 and b{0) = 1 solutions become
nearly identical. This result is appa-
rent from the symmetry of the equations.

2. TFrom Figures 9-11, one can see that the
width of the resonance lines must decrease
monotonically as the interaction time in-
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Fig. 16. The yield of deuterium metastable atoms

(|a]® + |v]® and |a]?) vs magnetic field for 1610
MHz; |R| = 250 MHz, and [V| = 125 MHz. For this
case, curves corresponding to initial condition a(0)
= 1 and to b(0) = 1 are identical.
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Fig. 17.

(|a]2 + ]b|2 and ]a|2) vs magnetic field for 1610
Miz; |R| = 250 MHz, and |V| = 250 MHz. The solid
curves correspond to initial condition a(0) = 1 and
the dashed curves to b{0) = 1.

The yield of deuterium metastable atoms

creases. The curves shown in Figures 13-
18 are for t = 0.4 usec, which corresponds
to a cavity length of 12 em for a beam with
the velocity of interest (30 cm/usec).

3. The separation of metastable hydrogen or

AMPLITUDE  SQUARED

588 » 595
FIELD (GAUSS)
Fig. 18. The yield of deuterium metastable atoms

(]a.[2 + |b|2 and ]a]e) vs magnetic field for 1610
MHiz; |R| = 250 MHz, and |V| = 375 MHz. The solid
curves correspond to initial condition a{0) = 1 and
the dashed curves to b{0) = 1.

tritium atoms with different nuclear spin
orientations appears to be very easy in
the sense that the parameters may vary
over & wide range. However, for metasta-
ble deuterium atoms, if one uses too large
a field strength, the width of the lines
will be too large. Thus, the minimum cav-
ity length appears to be ~6 cm for deu—
terium atoms, but could be.shorter for hy-
(This is because

[R{/]V| must be held constant to achieve

drogen or tritium atoms.

Since
[v] < |V|max is required, |R| < |R|max is
also required.

8 glven transmission at resonance.

But the decay constants
corresponding to the unwanted nuclear spin
states are approximately proportional to
[R|; this implies % > % ip Vhere & is the
cavity length.)

For an incident unpolarized beam of metastebles
(i.e., 1/2 of beam in the o state, 1/2 in the 8
state) the transmission at resonance of the "spin
filter" is exactly 50%, as may be verified from
Figures 9 and 12 end from Figures 13-18. This fol-
lows from the expressions already derived which are

repeated here in a matrix form:
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-R¥V

a(t + =) vy > a(0)
- 1 :
-2
B(t > =) PACRE BE/\wo)/ .

The initial beam may be regaerded as an incoherent
mixture of o and B states although the final beam
is a coherent mixture. If we average over initial

and sum over final states, we find

2 2 2 2
Ja(t > =) |C + |o(t > =% = %|a(0) ] + %|b(0)]° ;
i.e., 50% of an (electron) unpolarized beam is
quenched.

We next consider the physical nature of the states
vhich are transmitted through the spin filter.

As a first step we eliminete the explicit time de-

pendence by defining the new variables

—i(wa -w)t
A = ge
-iw t
B = be B
—iwet
C = ce .

The equations for these new variables are found to
be

iA = (mu - w)A + XR¥C

i8 = wgB + V*C
i¢ = %RA + VB + (w, - %iy)C .

We choose wg = 0 (which we may do since the energy

scale is arbitrary) and define as usual § = waB -

w. The equations and definitions are then

iA

SA + WR¥C
iB = vV*C

iC = 3RA + VB - (mB + Xiy)cC

e

-1t
= ge

+im8et
C = ce .
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Let us define the spinors r and s, with amplitudes

p end q, as follows:

r = %’(%R*u' + V*B)
s = % (Va' - 3RB)
. +18t
where the spinor a' = qe . The total wave func-

tion, neglecting the e state (i.e., for t + =) is
then of the form § = aa + bR = (ne—iat)aeidt + bB =
Alae®®®) 4+ Bg = Aa’' + BB. Notice that r and s are
orthonormel. We can invert the definitions of r

and s to find:

at = = (34Rr + V#s)

o=

(Vr - %R¥s) .

roi-

Substituting these expressions into the definition
of y :

Y = pr + g8 = Ac' + BB

we obtain:

|+

(%RA + VB) A = % (3R¥*p + Vq)

i~

p =

q= %‘(V*A ~ 3R*B) B

n
L1

{(v#p - ¥Rq) .

We now derive the differential equations for p and

qQ:
ip = pc + 224
. _ V%A
ig = T

ic = Pp - (mBe + %iy)C .

If we specialize to resonance (8§ = 0) these equa-

tions become

ip = PC
ig =20
iC = Pp - (“se + ¥iy)c .

The variables may be further separated as follows:

-# = P(46) = R(Pp - i(uy, + 3iy)C)

- Pep + (gY - iNSe)ﬁ




_6 = P(ii)) - i(mse + ;iiY)é = P2C + (ky - imae)é .

Thus our three equations are

Lid L3 2
D+ (% - ine)p + Pp

]
o

P
n
o

ol
4
"

o

. 2
(3sy - ine)C + P°C

These equations have the solutions

-u,t ~u t
1 + 30 2

L~

|

‘o
—

»

o
1
e

2 2

- + - - .

where ul,2 = (y/4 imBe/2) + /éylh iwae) Py
i.e., ¥y and u, are the two large decay constants
defined earlier. For times of interest to us,

therefore:

Thus the amplitude of the spinor s is conserved
while the amplitude of r decays exactly as does the
emplitude of e.

Let us momentarily allow an arbitrary initial phase;
i.e., we put, once again, R = Ro. In spinor nota-

tion, for § = 0, r and s may be written

—iwat
WY
Rao%o0 ° .
r = - —1wﬁt
V¥ e
—iwat
Ve
RaoYoo
8 = -5 —iwst .
—%Ro e

The expectation velues of the Pauli operators for
these states are tabulated below:

] r 4 8

<o > t + 4)

<°y>
<2 En “En

+ -
e#cos(mast a) e*cos(wa

8

elsin(wast + A) —s*sin(wuet + A)

In the sbove table, e'® = R V#/|R V*|, ¢, = [R V¥|/

P2, and e = (RRSRO - V#V)/P2, Thus the spinors r
and 8 point opposite directions at all times, make
an angle of 0 = tan™t f# with respect to the z
axis, and rotate with the Larmor frequency wa8/2n.
The phase of the rotation is such that the direction
of r is parallel and s antiparallel to the direction
of the transverse field at the time the longitudinal
rf field has 1ts maximum positive value. (This can
be most easily seen by considering the static trans-
verse field to define the x axis, so that Ro and V
are both real.)

From this formuletion we can again conclude that
50% of an (electron) unpolarized beam will survive
the spin filter, since in thet case a given parti-
cle has a 50% probability of being in either of any
two orthonormal spin states, including the r and s
states defined above.

We note that our resulting metastable beam has both
100% electron polarization (rotating) and 100% nu-
clear polarization, and that the relative direction
Further, the
phase of the electron spin rotation is related to
the cavity rf phase.

of the electron spin can be varied.

8. THE FOUR-LEVEL PROBLEM

We now consider the effect of the f-level on the
Qualitatively, it
is clear that the transverse electric field will in-

solutions previously discussed.

duce quenching through the a - f transition and the
longitudinal rf electric field will induce quenching
through the 8 - f transition.

The four-level equations were stated in Section S.
The frequency dependent quantities which enter into

these equations are

iw t i(2w _ +w,. - &)t
e %€ cos wt = e aB Bf
ilw, + 8)t
+ 35e Be
and
iw i(w - 8§)t {w,, ~w_, + 8)t
e Bf cos wt = %e af + Le Bf af N

where § = W~ @ as before. The first of these
expressions, as noted in the discussion of the

three-level system, may be approximated (near § =
0) by the second term alone. For the second of

these expressions, on the other hand, the two terms

33




are of roughly equal importence. Thus the simplest
equations which reasonably describe the four level

system are:

18 = kR*cei(wB° "o + Vdeiw"‘ft

ip = V*ceimset - deei?Bf cos(mmﬁ - §)t

ié = 8Rae-i(w8e + o + V'be-imaet

id = V*ae-imaft - kR“be-ime cotx(mm8 - 8t

where we have put R' = -R¥ and V' = V¥ in accordance
with Teble X and the discussion in Section 61 Note
that these relations hold only in the zero field
limit; i.e., if €11 Ep e3, and g, > 1. All four-
level calculations presented here are based on this
assumption. Note also that an arbitrary initial
phase cannot be included in the four-level case by
putting R = Ro as was done in Section 7. The ini-

tial phase is, however, of no importance.

We first consider the quenching of a states by a
transverse electric field with no rf longitudinal
field present (i.e., R = 0). The equations above
then separate into two independent pairs of which
the a - £ pair is

. imaft
ia = Vde

-iwaft

id = V*ac - ¥iyd .

These equations are easily solved if one assumes

-u.t -u,t
e = Ale 1 + A2e 2

-u.t -u,t ~iw bt
d= (Dle 1, Dye 2 Je of " |

One finds that 2 and U, are the roots of

w2+ 2Eu + [v|2 =0 ,
where
E= y/h - imaf/2 .

Thus we mey write w, , = § t n where n = /2 - lv|2.
k]
For the initial condition a(0) = 1, 4(0) = 0, the

general solution for a is found to be
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o=l - e EF MLy Ho(E -t
n n

Ir |E[2 >> ]V|2, vwe may approximate n by

2
Lol L2

28 *
The expression for a becomes
2
]v[2 -2Et ~( Ze It
a > © + e
Lg

The first term has a small coefficient and rapid

decay constant; for times of interest, we may write

o xlvl®

vy s+ (v/2)

af
Ia]2ze-(y )t , 7Y0f

which is the Stark quenching formula given by Lamb
and Retherford.s Similar results are obtained for

the B - e quenching:

oyl

Be
Ibl2 ~e (Y )t Yﬁe

i 2 2
wge + (¥/2)
and for the a - e quenching:
ae 2
2. (v ™1 ae _ y|R|/4
la]? % e , Y= = 5
(v, = @)% + (v/2)° .

This result is not applicable to the B - f quench-
ing, however. It should also be noted that for the
field strength of present interest, the expansion
of n used above will not be valid for the 8 ~ e

case if wae is small or zero.

Thus, for a atoms in the presence of both rf and
static electric fields, we would expect an effec-
tive decey constant of the order of, but greater
than, yuf. The situation is complicated, however,
since the various contributions to the decay are
coherent.

An analytic solution at § = 0 is possible if

1msft i“aft
e cos mast is approximated by e . As al-

ready noted, this is not a good approximation; how-
ever, it at least partially takes into account the
8 - £ interaction and is included here primarily
for the physical insight that it may afford.

To obtain this solution, we first eliminate the os-
cillating time dependence with the substitution




The

o]
iA

1B

In terms of the previously defined amplitudes p and

At resonance (8§ = 0) the equations reduce to the

- ae-iSt

A

B=b

c - ceimeet

D= dei(m“f - o .

equations for these variables are
[s o AR* Y
0 0 v ~&R
) XV -(mBe + %ivy) [}
ARSI CVEE L)

we can derive

1]

RSA/2P + PC

]

V*SA/P + PD
P2 = XR*R + VAV

I

Pp - (wse + kiy)c

I}

Pq - (w p ~ & + ¥iy)D

two coupled pairs

ip = PC

i¢c = Pp - (wse + ¥iy)C |,
and

i§ = PD

id =

Pq ~ (v, + ¥iy)C ,

from which it follows that

" .02
P+2, P+PD=

4

g+ 22686 + p°

c

i
(=}

£ge = y/4 - ine/2

U
[}

and

*"w ] 2
q+2£°fq+l’q=0

D+ ezaf + P°D -'o
Thus
_ -ult -nt
p = ple + p2e
2 2
vhere ) o5 * fgg * Vg - P
and
—ut —u!
_ ult Byt
q = qle + q2e
' = 2 _ R
where ¥i,2 Ep * Eup b4 .

The quantities ¥y and b, ere recognized as the two
larger decay constantsdiscussed in the three-level
case; thus, for times of intefest, p + 0.

Eaf
mey expand the square root (as before) to obtain

However,

>> P2 for the present region of interest, so we

!~ = -
W“we 28 /2 iwaf

pé $=3 P2/2E = P2/(y/2 - iw ) .

af

The ui term decays rapidly, so for times of inter-
est

2
a4 qee-(P /28)t

Our initisl conditions are A(Q) = 1, B(O) = ¢(0) =
D(0) = 0. Now

ential equations.

a(0) = £ (vA(0) - xm*(0)) = %
and
4(0) = % (v*&(0) - %R¥5(0)) =0 ,
‘where the latter condition follows from the differ-

These conditions yield

=E*n V¢ Vv
q2 2n

P TP -
Thus, for large times,
A e-(P2/25)t

P>0; g5

3
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3 correspond to the approximete four-level theory in which e
i(mcf - &)t 1w, t i(wBe + 8)t
replaced by e end e cos wt + e The curves marked

4 correspond to the exact solutions of the four-level problenm.




Inserting these into the definition of A and B, we
obtain

-3
i
i

2
(arrp + va) » L= (2200
P

2
(V*p - 4Rq) » L% ~(F7/28)%

o=}
"
o+

In the three-level case, for large time, we obtained

2
oo L2 p o BT
P2 2P

Thus, both |A|2 and |B|? are altered only by & mul-

af

Y

tiplicative factor e~ where

af _ xPz
Yy o=

wy o+ (y/2)2

p% = %[r|2 + [v|Z .

A point worth noticing with respect to these solu-
tions is that only the state with amplitude g (the
s state) is coupled directly to the f state. That
is, if the e level were not present, the a-f-f in-
teraction, in this approximation, would select the
This is exactly

the opposite to the situation for the a-e-B8 inter~

r state and quench the s state.

actions; thus this contribution from the f level is

destructive.

In Figure 19 the line shape obtained by numerical

integration, with various approximations, is shown.
The calculation is for the case of m, = 0 deuterium
atoms at the (nearly) optimum frequency of 1611.99

MHz (which corresponds to Bo = 575 G).
eters are.‘Rl = |V| = 250 Miz.
expected, the curve which corresponds to the (6 =

The pearam-—
We note thet, as

0) analytic solution given above gives & result a-
bout midway between the three-level and the four-
level results.

In Figure 20 the exact four-level results for the
loss (at resonance) of |a|2 are shown for various
parameters and for the same frequency and magnetic
field as above.
of |a]2 (at 0.25 usec) to the three-level equili-
brium value ([aolz) which would obtain in the ab-

These curves represent the ratio

sence of the f level. The dashed curve represents
the prediction of the approximate four-level ana-
lytic solution given ebove. Note that this pre-

dicted value depends only on RIRIZ + |V|2. The

te 025 usec

IRI
g%-05

IR!
i%uo

112/ 10,12
[

Q7 1 1 A 1 3
[+] 2 4 (] 8 10

‘POWER LEVEL %+ IRIZ+ 1V IN UNITS OF (125 MHz)

Fig. 20. The ratio of |a|? to |a°]2, where |a.°|2

is the three-level equilibrium value of |a|®, for
Bo = 575 G. The points are calculated from the

exact four-level theory; the curves are visual fits
to the polnts. The dashed curve represents the
prediction obtained from the (approximate) four-
level analytic solutions.

ratios vary approximately linearly with the inter-
action time t. The ratio of |b|% to |b°|2 is, for
this case, indistinguishable from the ratio of |a[2

to |e |2.
o

Figure 21 shows the time dependence of the solu-
tions, at § = 0, for the conditions used in Figure
19. Note that the inclusion of the antiresonant
term in the three-level theory (the Bloch-Siegert
correction term) results in a decay from the three-
level equilibrium solution of about 2%/usec.

Figure 22 shows the line shape for & frequency of
1508.326 MHz. Again the calculation is for m =0
deuterons (for which this particular frequency cor-
responds to By = 538 G) and for |R| = |V]| = 250 MHz.
Note the shift of the peaks from the resonant field.

Figure 23 shows the loss through the f state, for a
frequency 1508.326 MHz and field 538 G (mI = 0 deu~
terium atoms), for e vaeriety of parameters |R| and
|[v]. 1In this case, unlike that shown in Figure 20,
the ratios l&[zllaole and ib{ellbolz are not iden-
tical. Further, the loss through the f level ap-
pears to be somewhat greater. However, as may be
seen by comparing Figures 19 and 22, the peak posi-
tions are shifted in the latter case, and therefore
§ = 0 does not, in general, correspond to maximum
transmission. If both |a|2 and \b|2 transmission
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Fig. 23. The lower graph shows the ratio of [a[2
to |a°|2, vhere Iaol2 is the three-level equilibrium
value of |ale, for B = 538 G. The upper graph
shows the ratio of ]bl2 to |b°|2 for these condi-

tions.

are of interest (see Section 9) the value of § which
results in meximum transmission of |a.|2 + |b]2 will
depend on the parameters. (This is true since the
|a|2 and |b[2 curves are shifted in opposite direc-

tions for w
l2

# 0, and the relative contribution of
|2|° end |b|2 to the total transmitted beam depends
on |R|/|V|.) Thus the curves given in Figure 23
predict greater loss, in general, than would be

obteined by choosing an optimum value of 8.

Finelly, calculetions show that the three-level and
four-level results agree to within ~10%, for a wide
range of parameters, in the tail region. Thus, the
transmission of the unselected substates is ade-
quately described by the results given in Table XI.
The trensmission of the selected substate can, how-
ever, be improved by the field shaping technigue to
be described in Section 9.
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9. ADIABATIC VARIATION OF THE ELECTRIC FIELDS

In the preceding discussion, we have assumed that
the verious applied fields are constant throughout
the spin filter. If this condition is not met, we
must resort to numerical techniques to solve even
the three-level equations, although some general
features of the solutions may be deduced from the

form of the equations.

For application to a practical polarized ion source,
the optimum transmission of the desired nuclear spin
substate can be achieved {f (a) the static electric
field is constant, and (b) the rf field increases
slowly from zero at the entrance of the spin filter
to a maximum near the center and then decreases to

zero at the exit.

It was shown in Section 7 that, in three-level ap-
proximation, exactly 50% of an (electron) unpolar-
ized st beam with the desired my value could be
transmitted through a combination of static trans-
verse and longitudinal rf electric fields. In a
practical ion source, however, the 8 component of
the atomic beam will almost certainly be quenched
by the required “"sweep" fields long before it
reaches the spin filter. In addition, any 8 compo-
nent which emerges from the filter will probably

be quenched before reaching the argon exchange cell.
For the parameters |R| = [V| = 250 MHz, for example,
only 64% of an initially pure ¢ beam would emerge
from the spin filter in an a state, so that only
about 1/3 of the initially produced unpolarized
beam would be available at the argon exchange cell.
(Note that we are referring always to the beam com-
ponent with the desired my value; thus, in terms of
the total atomic beam the 1/3 given sbove becomes
1/6 for hydrogen or tritium beams and 1/9 for deu-
terium beams.)

If the fields are shaped as indicated above, it is

possible, in the three-level approximation, to

achieve 100% transmission for a pure &« beam. A

spin filter with such field shaping will have 0%

trensmission for e B beam and thus will still have

50% transmission for an (electron) unpolarized beam.

This is indicated in Figure 24 for a space variation '

of the rf field strength of the form sin(%ﬁ) where
o -
z 18 the distence from the entrance to the rf re-

gion and Z, is the total length of the rf region.

For this example |V| is assumed to have the constant
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Fig. 24, The quantities |a[2 + |b[2 and ]a[2 vs
time as a metastable beam (a{0) = 1) traverses a
cavity whose rf strength varies as sin(ﬂz/zo), where

zo(= 30 em) is the total length of the cavity.
These curves correspond to §/2r = 0, lleax = 250

MHz, and to a constant static electric field such
that |V| = 250 MHz.

value 250 MHz and lleax = 250 MHz. The results of
both three-level and four-level theory are shown.
(The deviation from 100% of the transmission which
corresponds to three-level theory arises solely from
the inclusion of both frequency terms in the expan-
sion of cos(wt), while the discussion above is based
iwt. All results pre-

sented in Figures 24 and 25 are based on calcula-

on the assumption cos wt ¥ ke

tions which include both terms of cos wkt.)

These results can be understood as follows. For
simplicity, consider the special case of resonance
(8§ = 0) and crossing (wBe = 0). The three-level

equations are then, as noted in Section T:

ia = %R¥*c
ib = V#e
i¢ = %Ra + Vb - M(iyc) .

Also as noted in Section T, it is evident that one

possible solution of these equations is
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Fig. 25. The quentities ]a.|2 + |b|2 and |a]? vs
time for various rates of increase and decrease of
of the rf field strength. The rising and falling

portions of the rf field have the shape sine(tn/ZT).
The curves numbered 1-T correspond to t = 0.2, 0.1,
0.05, 0.025, 0.00125, 0.000625, and 0.0 usec, re-
spectively. For all curves /27 = 0 and [R| = |V]|
= 250 MHz. Note the decrease in the overall decay
rate when the rf field is turned off.

where the constants 2, and bo are related by

+ =
%Rao Vbo 0
or, equivalently

a.o/bo = -2V/R.

(These are, in fact, the equilibrium solutions pre-
viously discussed.) If |R| + 0, the equilibrium
solution will correspond to a pure a state. If

|R| > 0 all nuclear substates are equivalent and no
selection would occur. However, if |R| is in-
creased sufficiently gradually, so that the condi-
tion %Ra + Vb = O can be followed adiabatically,
the nuclear spin selection can be made without loss.
At this point, the amplitude which describes a par-
ticle in the beam will be & coherent mixture of o
and B states. If |R| is then slowly decreased to
zero, the o and B mixture will be transformed back
into a pure a state. Thus there are two important
aspects to the field shaping: (a) & slow rise of
|R| prevents loss from occuring through the excita-

tion of "traensients" as the beam enters the cavity,
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and (b) a slow fall of [R| transforms the mixed a
end B state back into the more stable pure o state.
If no quenching between the rf region and the argon
exchange region were likely to occur, the second
part of the field shaping would be unnecessary. It
is evident that the important parameter in these
arguments is |R|/[V], so that an exactly constant
]Vl is not required.

The above can also be expressed in terms of the r

and 8 spinors defined in Section 7. We recall that

s = & (Va - 3R8)
and has the constant amplitude qy- In terms of a
end b, for § = 0,

qQ=aq

1= % (V#a - 3Rb) .

Thus, if |R[ + 0, & + o end q(t) = q_ = a(0) = 1.
it IRI is increased sufficiently gradually, the
state 8 will be conserved and therefore a particular
a + B mixture will be formed. If |R| is then de-
creased sufficiently gradually, it will again be
conserved and the mixture state will be transformed

back into a pure o state.

It remains to determine what is meant by "suffi-
ciently graduslly." 1In Figure 25 the results for
various assumed rise times for the rf field are pre-
sented. The exact four-level theory was used for
these calculetions. We essume a 30 cm overall path
(velocity = 30 cm/psec) and that only the static
electric field acts over the last 15 cm.
and falling portions of the rf field is assumed to
have the shape sin®(tn/21). The rf field is fully

turned off at t = 0 and at t = 0.5 usec.

The rising

The vari-
ous curves are labeled with the parameter t and in
each case the upper curve represents |a|2 + |b|2,
and the lower curve ]a]z. It is seen that no loss
At the steepest
part of the sinz(tn/ZT) curve, the fractional rate

occurs for the case 1 = 0.2 usec.

of change in ]RI is n/t. For T = 0.2 usec, w1/t =

ke

15.7 x 10° sec?.

around 1600 x 106

Thus, we have demonstreted that e

8ince the Larmor frequency is
sect, [R| changes about 1% in a
Larmor cycle.
satisfactory criterion for adiabaticity is that the
strength of the rf field may change no more then
about 1% per cycle. This is about the value that

one would expect.
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APPENDIX A. A COMPUTER PROGRAM FOR EVALUATING THE
ANALYTIC SOLUTION OF THE THREE-LEVEL EQUATIONS

A FORTRAN IV program which evalumtes the solutions
developed in Section 7 is given in this appendix.
The version given computes the squared amplitudes
la|?, Iv|2, |e|?, and la.l2 + |b|? as & function of
time for a set of fixed driving frequencies and for
fixed magnetic field. The modulus and phase of a,
b, and ¢ are also given. Other versions of the pro-
gram exist in which time is held constant while the
variation of the above quantities with magnetic
field at fixed frequency, or with frequency at fixed
magnetic field, is studied.

The input for the progrem is as follows:

Card 1  (FORMAT 6 F12.6)

XSPIN spin of nucleus (i.e., % or 1)

GJ gy value for the ES;é states (= 2)

MU magnetic moment of the nucleus (in nu-
clear magnetons)

DELW zero magnetic field hyperfine splitting
for the 2S35 state (MHz)

GJP gy value for the.2P% states (Z 2/3)

DELWP zero magnetic field hyperfine splitting

for the 2P;2 states (MHz)

(The radiative correction to the &5 value is sup-
plied by the subroutine BREIT and should not be in-
cluded in GJ and GJP.)

Card 2  (FORMAT 6 F12.6)
FREQMN minimum applied frequency (MHz)
FREQDL increment in applied frequency (MHz)
FREQMX meximum applied frequency (MHz)
TF maximum time at which solutions are to
" be evaluated (usec)
DELT increment in time at which solutions are
to be evaluated (TF/DELT should not ex-
ceed 500)
BGAUSS magnetic field (G)
Card 3 (FORMAT 6 F12.6)
MM M in MHz (angular frequency)
RR R in MHz (angular frequency)
\A'2 V in MHz (angular frequency)

where these quantities are complex and therefore
appear as three pairs of numbers on the card. The
reel part of each quaentity eppears first. The relae-
tions between these units and practical units are

given in the program listing.

Cerd 4 (FORMAT 6 Ik)

IMODE If IMODE = 1, program returns to start.
If IMODE = 2, progrem returns to read
in new Card 3 and proceeds.

ICSMN minimum case to be celculated

ICSMX meximum case to be calculated

where m; = 1, 0, -1 correspond to cases 1, 2, and
3 for deuterium atoms end m; = ¥, =X, correspond to
cases 1 and 2 for hydrogen and for tritium atoms.

The program consists of a main program together
with several subroutines. The function of the
various subroutines is as follows:

a) SUBROUTINE cUBIC (P, Q, R, RT1, RT2, RT3)
This subroutine evaluates the solutions of a cubic

equation with complex coefficients of the form x3

+ Px2 + Qx + R =0,

It uses double-precision arith-
metic in order to obtain the required accuracy. The
three complex roots, RT1l, RT2, and RT3 are in order

of decreasing real parts.

b) SUBROUTINE DPROD (XR, XI, YR, YI, ZR, 2I)
This subroutine multiplies the complex numbers X
and Y together to give complex Z. Double-precision
arithmetic is used; thus the real and imaginary

parts are carried separately.

c) SUBROUTINE DARCTAN (Y, X, Z)
This subroutine finds Z = arctangent (Y/X) in the
correct quadrant. Double-precision arithmetic is

used.

da) SUBROUTINE BREIT (XI, FFF, xm, GJ, GI, DELW
BGAUSS, W, XGAUSS, EPS1)
This subroutine evaluates the energy of a given
state according to the Breit-Rabi formula (see

Section 2). The input variebles are

XI spin of nucleus

FFF F quantum number

XM oy quantum number

cJ g; value (atomic g factor) excluding

radiative corrections

GI g; value (nuclear g factor)

* DELW zero magnetic field hyperfine splitting
in MHz

BGAUSS magnetic field in G

The output variables are
W energy of state in MHz
XGAUSS value of the parameter X(defined in

Section 2)
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EPS1 nuclear moment correction term €& +Qu +Rfork=1, 2, 3, are given. The devia-

(in MHz; already included in W) tion of these quantities from zero gives some idea

of the accuracy with which the roots have been de-
The output from the progrem is fully labeled, and v

includes the values of the coefficients Ak’ Bk’ and termined.

C,»> the decay constants , , and the relevant fre- °  Tape 10 is defined es input and Tape 9 as output
quencies in MHz. In addition, the three quantities for the particular system for which this program
F1, F2, and F3, vhich are the values of k3 + Pu2 _ was written.

k k

¢ 1IME PLOT VERSION
¢ UDIVIDE R AND V BY 13.94 TO OBTAIN vOLTS/CM PEAK TO ZERO
¢ DIviDF M BY 8.80 TO 0BTAIN GAUSS PFAK TO ZERO
c THAT 1S, ENTER R,V, AND M [N MHZ ANGULAR FREQUENCY
NIMENSION FFA(6),FFB(6),XMFA(6),XMFB(6)
DIMENSION FARS(3),FACS(3),FBCS(3)
DIMENSION ASQ(500),BS0(500),CSQ(500),ABSG(500),TIME(S500)
COMPILEX XMM,RR,VV,DELAC,P,»Q,R,XMMSTR,RRSTAR,VVSTAR,XI,RT1,RT2,RT3,
1XIMU(3),D,EPS(3)»DEL(3),A(3),B(3),C(3),8UM
COMPLEX X,F1,F2,F3,AA,BB,CC,PHASAB,PHASAC
DOUBLE PRECISION P|
COMMON Pt
1 FORMAT(6F12.6)
2 FORMAT(6H A(K)= 6F9.4,74 My(1)= 2F9.4,4H Fi=z 2F9.4)
3 FORMAT(6H B(K)= 6F9.4,7H My(2)= 2F9.4,4H F2= 2F9.4)
4 FORMAT(6H C(K)= 649.4,7H MU(3)= 2F9.4,4H F3= 2F9.4)
5 FORMAT(6HOFREQ= F10,3,5%,3HK=1,15X,3HK=2,15X,3HK=3 )
6 FORMAT(122HO TIME Aww? Bew2 Cen? Aen?2
1+Bes? MOD A PHASE A Mon 8 FHASE B MOD C PHASE C
2 )
7 FORMAT(F12.3,4F12.6,6F10.3)
8 FORMAT(1H1)
9 FORMAT(4H MM= 2F12,6,4H RRx 2r12,6,4H VVz 2F12,6)

10 FORMAT(6H FREG= F12.3,71 GAMMA= F12,3,54 FAB= F12.3, SH FAC= F12.

13,5H FBC= F12.3 )

12 FORMAT(40H DOUBLE PRECISION cUBIC SOLUTION METHOD )

13 FORMAT(614)

14 FORMAT(7H SPIN= 112,6,4H GJ= F12.6,5H MU=z F12.6,6H DELWE F12.6,

15H GJP= F12.6,7H DELWP= F12.6)

15 FORMAT(14H STATE NUMBER 14,94 AT FIELD F7.1, 6H GAUSS )
160 FORMAT(48H INITIAL CONDITIQONS 4a=z1, B=0, C=20 )
164 FORMAT(48H INITIA_L CONDITIQNS A=p, B=1, Cz0 )

PI1=4.0«DATAN(1.0D+0)
GAMMA=200.%3,1415927
X1=CMPLX(0.0,1.0)
WRITE(9,8)

19 READ(10,1)XSPIN,GJ,XMU,DELW,GJIP .NELWF
READ(10,1)FREUMN,FREQDL,FREQMX, FF,DELT,BGAUSS
GI=XMU/XSPIN
1SPIN=XSPIN+1.0
GO TU (100,101),ISPIN

100 NCASE=2
FFA(1)=1,0
XMFAC1)=1,0
FF8(1)=0.,0
XMFB(1)=0.,0
FFA(2)=1,0
XMFA(2)=0.0
FFB(2)=1.0
XMFB(2)=-1,0
GO TO 20

104 NCASE=3
FFA(1)=1,5
XMFA(1)=1.5
FFB(1)=0,5

Ly




29

c IM

22

131

130

XMFB(1)=20.5
FFAC2)=zL,5
XMFA(2)=0.5
FFB(2)=0.5
XMFB(2)2=0.,5
FFA(3)=1,5
XMFA(3)=-0.5
FFB(3)=1.5
XMFB(3)=~1,.5
READ(10,1)XMM,RR, VY
READ(10,13) IMODE,» [CSMN, {CSMX
ODE 1 GO TO 19 2 GO TO 20
WRITE(9,8)
NFREG= (FREQMX~-FREQMN)/FREGDL
NFREQ=NFREQ+1
NTIME=TF/DELT
NTIME=NTIME«1
DO 132 INIT=1,2
DO 110 ICASE=1CSMpy, ICSMX
CALL BREIT(XSPIN,FFA(CICASE),XMFA(ICASE),GJ,G],DELW,BGAUSS,FA,XGAUS
1S,FPS1)
CALL BREIT(XSPINsFFB(ICASE),XMFB(ICASE),GJ,G1,DEIW,BGAUSS,FB,XGAUS
15,EPS1)
CALL BREIT(XSPIN,FFA(ICASE),XMFA(ICASE),GJP,G],DELWP,HGAUSS,FC,BGA
1USS,EPS1)
FC=FC-1058.070
FAR=FA-FB
FAC=FA-FC
FABS(ICASE)=FAB
FACS(ICASE)=FAC
FBCSC(ICASE)=FB-FC
DO 110 1=1,NFREQ
Fl=1-1
FREQ=FREQMN+F | *FREQDL
DELAB=(FREQ=-FAB)*2,.0¢3,1415927
PHASAB=CMPLX(0+.0,DELAB)
ARL=(FREQ-FAC)*2.0%3,1415927
PHASAC=CMPLX (0.0, ARL)
AIM=-0,5¢GAMMA
DELAC=CMPLX(ARL,A M)
XMMSTR=CONJG (XMM)
RRSTAR=CONJG(RR)
VVSTAR=CONJG(VV)
P=DELAB+DELAC
0=DELAB*DELAC-VV*VVSTARA0,25« (RR«RRSTAR+XMM*XMMSTR)
R=0.5*REALIXMMEYVeRRSTAR) =0 20* (RR*RRSTAR*DEL AB+XMM«XMMSTR«DELAC)
=-X1eP
0=-0
R=X]*R
CALL CUBIC(P,0sRsRTL,RT2,RTI)
X=RT1
FlzX**3+PaYXwe2+Qex+R
X=RT2
F2=Xa#3+PeXaa2+Qwy+R
X=RT3
FIzX*aI+PeXew2+Qwy+R
XIMUCL1)=RT1eXl
XIMU(2)=RT2w%X]
XIMU(3)=RT3eXI]
00 22 K=1,3
D=(DELAC+XIMUCK) )« (DELAR+XTMUCK))-VV*VVSTAR
EPS(K)==0,5«(XMM* (DELAC+XIMU(K))-RR*VVSTAR)/D
DEL(K)=~0.5+(RR«(DELAB+XIMU(K))-XMMeVV) /D
A(1)=EPS(2)#DEL(I)-EPS(I)*DEL(2)
A(2)=EPS(3)#DEL(1)-EPS(1)*DEL(S)
A(3)=FPS(L)*NEL(2)-EPS(2)*DEL(1)
SUMZA(1)+A(2)+A(3)
GO TO (130,131, 1417
A(1)=DEL(2)-DEL(3)
A(2)=DEL(3)-DEL(2)
AC3)=DEL(1)-DEL(2)
poO 23 k=1.,3
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ALK)=A(K)/SUM
B(K)=EPS(K)»A(K)

23 C(K)=DFL(K)+A(K)
WRITE(9,8)
WRITE(9,14)XSPIN,GJs XMU,DELW,GJUP,DELKP
WRITE(9,5)FRED
WRITE(9,2)(A(K),K=1,3),RT1,F1
WRITE(9,3)(B(K),K=1,3),RT2,F2
WRITE(9,4)(C(K),K=1,3),RT3,F3
GO TO (150,151,117

150 WRITE(9,160)
GO TO 152

151 WRITE(9,161)

192 WRITE(9,9)XMM,RR,VV
WRTITE(9,10)FREU,GAMMA,FABS(ICASS),FACS(ICASE),FBLS(ICASE)
WRITF(9,15)ICASE,HGAUSS
WRITF(9.,6)

DO 114 ITIME=1,NTIME
FITIME=ITIME

Ts(FITIME-1,.0)*DE| T
TIMFCITIME)=T

X=RT1*T

F1=CEXP(X)

X=RTZ2#T

F2=CEXP(X)

X=RT3*T

F3=CEXP(X)
AA=A(L)/FL+A(2)/F2+A(3)/F3
BB=B(1)/F1+B(2)/F2+B(3)/F3
BB=BH*CEXP(PHASAB«T)
CC=C(1)/F1+C(2)/F2+C(3)/F3
CC=CC+CEXP(PHASAC«T)
ASQCITIME)=(CABS(AA) Yww2
BSQUITIME)=(CABS(8B) ) *e2
CSOCITIME)=(CABS{( C))*e2
ABSOCITIME)=zASUCITIME)+RSO(ITIME)
XMODAA=CABS(AA)

XMODBR=CABS (BB)

XMQDCC=CABS(CC)
PHASAA=ATANZ2(AIMAG(AA),REALCAA))
PHASAA=180.0+PHASAA/3.1415927
PHASBB=ATAN2(AIMAG(BB),REAL(8B))
PHASBB=180,0«PHASEB/3.1415927
PHASCC=ATANZ2(AIMAG(CC),REAL(CC))
PHASCC=180.0+FHASCC/3.1415927

114 WRITE(9,7)TIMEC(ITIME),ASQCITIME) ,BRSQ(ITIME),CSQ(ITIME), ABSO(ITIME)

1,XMODAA,PHASAA» XMODBB, PHASEB, XMUDCC,PHASCC

110 CONTINUE

132 CONTINUE
GO TO (19,20, IMODE
END

SUBROUTINE CUBIC(P,Q,R,RT1,RT2,RTI)
DOUBLE PRECISION VERSION
SOLVES CUBIC EQUATIOHNS OF THE FORM X#»#3+PeXa#2+Q0#X+Rz0.0 WITH P, G,
AND R COMPLEX. THE THREE ROOTS RT1, RT2, AND RT3 ARE IN ORDER cf
UECREASING REAL PART,
COMPLEX P,0,R,RTL,RT2,RTI»RT(3),A,8,U,W120
DOUBLE PRECISIUN PR>PI,QR+Q1,RR,R],P2R.P21,AR,Al,P3R,P3],POR,PCI,
1RR,B1,82R,B21,A2R,A21,A3R»A31,R12R,RT2I,RTABS,RTARG,RTR,RT1, AR,
2AA[,DARG
W120=CMPLX(~-0.5,0,8660254)
PR=REAL (P)
QR=REAL (Q)
RR=REAL (R)
PI=AIMAG(P)
QI=AIMAG(O)
RI=AIMAG(R)
CALL DPROD(PR,PI,PR,PI,P2R,P21)




12

11

lg

14

13

is

AR2QR/3.0-P2R/9,0
Alxnl/3.0-921/9.0
ASNGLR=ARe3,.0

ASNGLI=Al«3,0
ASCMPLX(ASNGLR,ASNGL1)

CALL DPRQD(P2R,P21,PR,P1,P3R,P31}
CALL DPROD(PR,P1,0R,Ql,PQR,PQI)
BR=P3R/27.0-PQR/6,0+RR/2,0
81=P31,27.0-PQI/6,0+R!/2.0
CALL DPROD(BR,B1,BR.,Bl,B2R,B2I)
CA|IL DPROD(AR'AI'AR'AI:A?R:‘?I)
CALL DPROD(AR,Al,A2R,A21,A3R,A31)
RT2RsB2R+A3R

RT21=821+A3!
RTABS=(RT2R##2+RTD[*e2)en0,25
CALL NDARCTN(RT21,RT2R,RTARG)
RTARG=RTARG/?2.0
RTR=RTABS*DCOS(RTARG)
RT1=RTABSeDSIN(RTARG)
ABSAA=DSQRT((RTR=BR)#*2+(RT]-Bl)ee2)
ABSBB=DSQRT((RTR*QRIw*24(RTI+RI)we2)
IF(ABSAA,GE.ABSBB)GO Tn 2
SGN=z-1.,0

GO T0 3

SGN=1.0

AAR=-RR+SGN#RTR
AAl=-BI+SGNeRT!
ABS=(AARew2+pAlwo2)va(1,0/6.0)
CALL UDARCTNCAALl,AAR,DARG)
ARG=DARG/3.0

UR=ABS+COS(ARG)
UI=ABS«SIN(ARG)

UsCMPLXC(UR,UT)

po 1 J=1,3

RY(J)=U=-(P+A/UI /3.0

UzijeWw120

R1=REAL(RT(1))

R2=REAL(RT(2))

R3I=REAL(RT(3))

1F(R1.GE,R2)G0 TO 10
IF(R3.GE,R2)G0 10 11
IF(R3I.GE,RLIGN TO 12

J1s32

J2=z1

J3=3

GO TN 1%

J1=2

J?233

J3=1

GO0 TO 5

J1=3

J2=2

1331

GO TO 19

1IFIR3.GK,R1YIGOD TO 13
[F(RS.GE.R?)YGN TO 14

Jizt

J2=2

323

G0 T 15

j1=1

IYERS

JREY

GO TN 15

J123

J2=1

1322

CONT INUE

RT{®HT(J1)

RT?2=HT(J2)

RT3=RT(J3)

RFTURN

END
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SUBROUTINE DPROD(XR,XI,YR»v!,2R.,Z1)
DOUBLE PREC!SION xR, X1, YR, YI, ZR, 21
ZRaXR*#YR-X1eY]

ZI=X1*#YR+XReY]

RETURN

END

SUBROUTINE DARCTN(Y,X,2)

F INDS DOURLE PRECISION ARCTANGENT IN RADIANS IN CORRECT QUADRANT.
DEFINES ZERO/ZEROSZERO., USES RANGE Pl TO - PI

300
303

304

301
305

306
307

3u2
308

N G-

DOUBLE PRECISION X,Y,Z,PI,YX
COMMON P

YX=Y/X
1F(x)3080,301,302
1F(Y)303,304,304
Z=DATANCYX) =PI
GO T0 308
Z=DATANLYX)+P1
GO TO 308
1IF(Y)305,306,307
2=-P1/2.0

GO TO 308

2=0.0

GO TO 308
Z=P1/2,0

GO TO 308
Z=NATANCYX)
RETURN

END

SUBROUTINE BREIT(XI,FFF,XM,6),G1,DELW,RGAUSS,W,XGAUSS,EPS1)
ISGN=FFF
F=ISGN
SGN=(F#2,0-1.0)«(DELW/2,0)
GJ1=GJ+0,00229*(GJ-1,0)
EPS=1.0/(GJ1+1836,1/61-1.0)
XGAUSS=GJ1+9.2732+«BGAUSS/(6.625+*DELW*(1,0+EPS))
FPS1=EPS«DELW*XGAISS

Z-DELW/(4.0¢X1+2, 0)+EPSIeXM
Rz2,0%*xXM/(X1+0.:5)

IF(B+1,0)1,1,2

IF (XGAUSS-1,0)2,3,3
SGN=-SGN
W=W+SGN*SQRT(1.0+B*XGAUSS+XGAUSS«XGAUSS)
IF(GJ.GE,1.0) RETYRN
DELTA=ABS(W)I«4.0*BGAUSS/(9,0+5214,0)
WzW-DFLTA
RETURN
END




APPENDIX B. A COMPUTER PROGRAM FOR THE NUMERICAL
INTEGRATION OF THE FOUR-LEVEL EQUATIONS

A FORTRAN IV program which numerically integretes
the four-level equations is given in this appendix.
The version given finds |a|2, |b|2, |c]2, Id|2, and
|a.|2 + Ibl2 as a function of time for a set of fixed
driving frequencies and fixed magnetic field. The
real and imaginary parts of a, b, ¢, and d are also
given. Other versions of the program exist in.which
time is held constant while the variation of the
above quantities with magnetic field at fixed fre-
quency, or with frequency at fixed magnetic field,
is studied.

On a CDC 6600, the program requires (for the accu-
racy used here) about 1 minute of central processor
time per microsecond of integration time. More pre-
cisely, the computation times and number of times

the subroutine DERIV is called are as follows:

Card 3 (FORMAT F12.6)

FREQ2 driving transverse frequency in MHz

(normally zero)
Card 4 (FORMAT 6 F12.6)

Identical to Card 3 for program described in
Appendix A,

Card 5 (FORMAT 6 F12.6)
XMMP M' in MHz (angular frequency)
RRP R' in MHz (angular frequency)
VVP V' in Miz (angular frequency)

where these quantities are complex and again re-

quire two numbers each for their specification.
Cards 6, 7 (FORMAT 6 F12.6)

x0(1) initiel real part of a
xo(2) initial imeginary part of a

Case DERIV Calls Computation Time Approximation
per usec per usec

1 5,000 35 sec 3 level, eiwt

2 80,000 66 sec 3 level, cos wt

3 140,000 L2 sec 4 level, et¥t, o-iut

k 80,000 81 sec 4 level, cos wt

where the case number is as given in Figure 20. The
program is believed to maintain better than 1% accu~
racy for integration times at least up to 1 micro-
second. The accuracy can be adjusted with the pa=~
rameters RELTST and ABSTST in subroutine INTEG.
Accuracy testing is done in subroutine ACCRY.

The program is set up to allow the transverse elec-

tric field to oscillate also. This case could be

of interest if the metastable beam was mixed with

a plasma, since rf fields could penetrate the plas-

ma, under appropriate conditions, while static elec-
tric fields cannot.

The input for the program is as follows:

Card 1 (FORMAT F12.6)

Identical to Card 1 for progrem described in

Appendix A.
Card 2 ( FORMAT F12.6)

Identical to Card 2 for program described in
Appendix A.

xo(3) initial real part of b
xo(k) initial imaginary part of b
x0(5) initial real part of c
X0(6) initial imaginary part of c
xo(T) initial real part of d
Xo(8) initial imaginary part of 4

Card 8 (FORMAT 6 Ilk)

Identical to Card 4 of program described in
Appendix A.

The program consists of & main program together
with several subroutines. The function of the

various subroutines is as follows:

a) SUBROUTINE INTEG (NN, TI, TTF, HH, HHP, MM,
VWM, IP, X0, TT, XXP)
This subroutine integrates an arbitrary system of
real inear differential equations. The arguments
of this subroutine are defined by comments in the
main program listing. The monitoring feature (a

periodic test of & specified variable against some
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1limit) is not used. INTEG calls a number of sub-
routines of which only those which are specific to
the rroblem under discussion will be further de-
scribed.

b) BUBROUTIN DERIV (T, V, FD)

This subroutine computes the value of the first de-
rivatives FD(I) (for I = 1 to 8) given the value of
the functions V(I) {for I = 1 to 8) and the time T.
I =1 and 2 correspond to the real and imaginary
parts of a, 3 and 4 to the real and imaginary parts
of b, and so on. (The four complex first-order dif-
ferential equations have been rewritten as eight

real first-order differential equations.)

¢) SUBROUTINE PRINT (T, V)
This subroutine sets up the common veriable arrays
at the specified print-step intervals for later
printout.

d) SUBROUTINE BREIT (XI, FFF, XM, GJ, GI, DEIW,

BGAUSS, W, XGAUSS, EPS1)
This subroutine was described in Appendix A.

The output from the program is fully labeled. Tape
10 is defined as input and Tape 9 as output for the

system for which this program was written.

The inc¢lusion of fields whose strength varies as
time (or displacement in a cavity) can be easily
incorporated in the subroutine DERIV. It is re-
quired to give RR, RRP, MM, MMP, VV, and VVP the
required time dependence, as indicated on comment

cards.

It is important to simplify DFRIV as much as possi-
ble, from the point of view of computation time,
since it is in the innermost loop. The form listed
here is more general than required for many prob-
lems, and, if computer time is important, it should
be simplified in those cases.

PROGRAM LAMBV (INRPUT,TAPE 10=INPUT,OUTPUT.TAPE 9= OUTPUTFILMs TAPE

1 12=FILM)

OO OOOO

COMPLEX XMM¢XMMP ,RR¢RRPsVVsVVYP

AMPLITUDES AS FUNCTION UF TIME VERSION.
DRIVING FREQUENCIES A{L{UWED (TRANSVFRSE FREQUENCY NORMALLY ZERO).
DIMENSIONS ALLOW UP To S FREQUENCY POINTSs 100 TIME POINTS
(RESULTS STORED AS NIMENSIONED VARIABLES TO FACILITATE PLOTTING)
DIVIDE R anhD V BY 13.94 TO OBTAIN VnLTS/CM PEAK TO ZgRO

DIVIDE M By 8480 TO OBTAIN GAUSS PEaK Tn ZERD

THAT 1Ss ENTER RyVs AND M IN MHZ (ANBULAR FREQUENCY)

LONGITUDINAL AND TRANSVERSE

COMMON ARL(3-100.5).8RL(3910095),CRL(30100|5)vDRL(3-100t5)’
1aIM(3410095)9BIM(3410095)9CIM(3410045)9DIM(3,10045)4ICASEeIFREQ,

21TIMESTIME(100)

COMMON/RLK3/XMM s XMMP 9 RR9eRRP s YV e VYD s BAMMA2 s WAB s WAE s WAF ¢ WBE 9 WBF y WEF o

1WFREW] s WFREQ2
COMMON/RLKT/TDERTV

DIMENSION ASU(100) oBSQA(100) 9CSQ(100),0SQ(100)sABSQ(200)
RIMERSINN FFA(3) «XMFA(3) oFFB(3) 9 XMFR(3)
NIMAEVYSTON XO(30) « XXP (30) ¢+FREN(S) (FSP (346)

1 FURMAT{/F12eh)

6 FORMAT(Y32H TIME Awa?
1oHn02 arL aAlm BRL BIm
2

7 FURMATIF10a3+5F10ne648FT743)
4 FORMATI1H])

Hee2 Cru2
CRL CIm OR{ DIM

DU#2 Ane2

Q FORMAT "4H MMa PF14,694H KRE 2F14 .66 4H VUS 2F14,6)

10 FORMETY (g4 HGAUSSe F12,39 8H GAMMAE

1849 FREg2m Fl2.3 )

F12«3¢8H FREQI= F12.3

1] FoRMAT (g MMPx F13,69F14.6% GH RRP2 F13.,67F14e69 SH VVPE F13,69

1F14,46)
13 #0QvaT(a14)

14 c0RMAT(7W SPINR F12.6¢6H GJs F12,698H MuUs F12.6,6H DELWS Fl2.6¢

154 GJPm F12.69TH DELWPE F12.6)
15 FORMAT(14H STATE NUMBER 14)
16 FORMAT(16H INITIAL VECYOR

4(F1ne39F7,3))

17 FORMAT(5H FABm F10,3v5H FAE= flo.iosu FAF® F10,3¢'5H FBES F10.3»

16H FRFm F10e345H FEFs F10,3

GAMMA®1 000 0%2.0%3¢1415927
GAMMA2m() , S#GAMMA
WRITF (9,8)

50




19 READ(1041)XSPINeGJ e XMUIDELWIGJPINELWP
READ(1041)FREQMN,FREQDL ¢ FREQMX s TTF ¢ HHP 1 BGAUSS
READ(1041)FREQ2
GlmXMU/XSPIN
ISPINSXSPIN®l,.D
GO TO (100+101)ISPIN

100 NCASEsm2
FFA(1)=1,0
XMFA(1)mle0
FFE(1)=0.0
XMFB(1)=0,0
FFA(2)=m}e0
XMFA(2)m0e0
FFR({2)=m1,0
AMFB (2)mel,0
GO0 TO 20

101 NCASE=3
FFA(1)=®],.5
XMFA(1)=1le5
FFR(l)=0.5
XMFB(1)m0e5
FFa(2)=my,5
XMFA(2)20+5
FFB(2)=g45
XMFB(2)==0,5
FFA(3)=y .5
XMFA (3)2=0,5
FFR(3)m} 45
XMFB(3)m=}1,5

20 READ(10,1)XMMgRR,VV
READ(1041) XMMPyRRPyVVP
READ(10,1) (XO(1)41Imle8)
READ(10,13) IMODE « ICSMN ICSMX
NFREQ=s (FREQUMX=FREQMN) /FREQUL
NFREQueNFREQ+]

DO 110 ICASE=ICSMN¢ICSMX

IDERIV=(

1{TIME=Q

CALL BREIT(XSPINSFFA(ICASE) s XMFA (ICASE) 1GJoG1+0OELWBGAUSSsFA,
1XGAUSSyEPS])

CALL BREIT(XSPIN.FFB(ICASE)OXMFB(ICAsﬁ)oGQyGIODELUoBGAUSSoFBQ
1XGAUSS4EPS1)

CALL BREIT(XSPIN,FFA(ICASE} s XMFA{ICASE) sGJPsGlsDELWPIBGAUSSIFE,
1XGAUSS,EPS1)

CALL BREIT(XSPIN,FFB(ICASE) s XMFB (ICASE) +GJPeGl+DE| WP9IBGAUSSsFF
1XGaUSS+£PS1)

FE=FE=~1058.070

FF=FF=~10584070

FABXFA=FB

FAE=FA=FE

FAF=F A=FF

FBE=FBwFE

FBF=FB=FF

FEF=FEFF

WAB=FAB#6,2831854

WAESFAE#6.283185¢4

WAFRFAF#6.283185¢4

WBE=FBE®6,2831854

WBFEFRF#6¢2831854

WwEFsFEF 4642831854

FSP(ICASEs 1) =FAB

FSP{ICAGE2) =FAE

FSP(ICASE3) ®FAF

FSP(ICASE+4) =FBE

FSP(ICASE+S)=FBF

FSP(ICASE6) sFEF

DO 112 3(FREQ31.NFREQ

FIFREQ=IFREQ

FREW(IFREQ) = (FIFREQ=1.0) *FREQDL* FREQMN

FREQI=FREQ(IFREQ)

WFREQ1=6¢2831854#FREWY

WFREQ2=6,28318544FREW2
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WRITE(9,8)
NN=8
TII()-O
HH=0,0001
MM=(
VVMZ( 40
1Prl
CALL INTEG(NNgTIoTTFoHHIHHPsMMsVyMsIP 9 X0y TTy XXP)
NN  NUMBER OF FIRST ORDER UIFFERENTIAL EQUATIONS
TI INITIAL VALUE OF INDEPENDENT VARIARLE
TTF FINAL VALUE OF INDEPENUDENT VARTABLE
HH GUESS AT STEP S§IZE
HHP PRINT STEP SIZF
MM VARIARLE TU BE MONITORED (0=NO, 1 TU NN YES )
VVM  VALUE TO MONITQR FOR
iP NUMBER OF PARAMETERS
X0 VECTOR OF STARTING VALUES
TT VALUE OF TIME RETURNED AT END oF INTEGRATION
XXP VARIARLE VALUES RETURNED AT ENp OF INTEGRATION
112 ¢ONTINUE
110 CONTINUE
NTIME=ITIME
D0 26 IFREu=]yNFREQ
DO 25 ICASE®ICSMNsICSMX
WRITE(9,8)
WRITE(9414)XSPIN,GJeXMUsDELWsGUP ¢DEL WP
WRITE (9,9) XMMyRR,VV
WRITE(9,11)XMMP yRRP 4 VVP
WRITE(9,10)BGAUSSsGAMMAIFREQ (IFREQ) +FREQ2
WRITE(9,15) ICASE
WRITE( 9¢16) (X0(1)ys131,48)
WRITE( 9417) (FSP(ICASEsIFS) 9 IFSx1,6)
WRITE(9,6)
NU 24 ITIME=1,NTIME
ASQ(ITIME) SARL(ICASEsITIMEIIFREQ) #%2,AIM(ICASE s ITIMEs IFREQ) #u2
BSQUITIMF)=BRL (ICASFeITIMEYIFREQ)##2,BIM(ICASEsITIMEYIFREQ) #42
CSQ(ITIME)2CRL(ICASEYITIMEY IFREQ)##2,CIM(ICASEsITIMEs IFREQ) #02
DSQUITIME) =DRL (ICASEYITIMEYIFREQ) ##2,0IM(ICASEsITIMEY IFREQ) %#2
ABSQ(ITIME) #ASQ(ITIME) +BSQ(ITIME)

24 WRITE(9,7) TIME(ITIME) yASQ(ITIME) 4BSQ(ITIME) sCSQ(ITIME) +OSQI(ITIME) »

1ABSQ(ITIME) »
2ARL(ICASEsITIMESIFREW) yAIMIICASE,ITIME+IFREQ) »
3BRL{ICASEs ITIME s IFREW) yBIM(ICASE,TTIMEy IFREQ) »
4CRLIICASEZITIMES IFREW) »CIM(ICASE,ITIMEs IFREQ) »
SORL(ICASEs ITIME+IFREQ) 4DIM(ICASE,ITIME.IFREQ)
25 CONTINUE
26 CONTINUE
GO TO (19920) 4 IMODE
END

SUBROUTINE INTEG (NNeTIsTTFoHHIHHP sMMsVVMIP o XD e TT 4 XXP)
INTEG() SOLVES A SYSTEM OF N FIRST oORDER OIFF EQNS By A 4TH
ORDER ADAMS P=C METHOD WITH AUTOMATYC ERROR CONTROLe STARTING
IS BY RUNGA=KUTTA,

INTEGER Pots

REAL LB

LOGICAL aCC
CUMMON/RLK1/NsToTF oHoHO9HP oMy Vit e Jo ACCILBIRELTST9ARSTST4FACTORY
18NDeX(3095) 9F (30,5) +E(30)4XP(30)

COMMON/RL K5/ IDOURL ¢ NDOUBL

DIMENSION X0(30) ¢XXP(30)

SET UP INITIAL VALUES
N=NN
TF=TTF
HBHH
HP=HHP
M3MM




N

VMaVVM

DO 10 ImloeN
10 X(Isl)mxo(])
IF (P.EQ.0) GO To 21
LaNe]
UsNep
NO 20 IsmLeU
XP(l)isXxo(D)
DO 20 J=mleS
X(ToJ)mxo(1)
7=71

NIV
-

BND®BTIoHP
HO=H
ABSB=a] ,nE=4
RE_B=ABSB
ABSTST=ABSB®14,2
RELTST=RELB®14,2
FACTOR=RELB/ABSB
LB=0,0084RELTST
10ouBL=n
NOOUR( =3
HEZ2e 0N
30 CALL START(IRETRN) ]
GO TO (100+99)+IRETRN
C SHOULD ANY OF THE STARTING VALUES BE PRINTED OUT
100 T=T=3,04H
NO 35 JUm2+4
T=T+H
CALL TEST(IRETRN)
GO TO (35960} IRETRN
35 CONTINUE
¢ BEGIN ADAMS METRHOD
40 cALL ADAMS
CALL ACCRY
1F (ACC) GO TO Sp
NO 45 I=]1eN
45 X(191)mx(Ie4)
G0 TO 39
S0 CALL TEST(IRETRN)
GO TO (101960) s IRETRN
101 CALL DOUBLE (IRETRN)
GO TO (40930)9IRETRN
60 IF (JJEQ.S) GO To 65
DU 64 I=x)eN
64 XP(I)=X(1sJ)
65 CALL PRINT(TsXP)
TT=T
DO 70 I=alseN
70 xXP(I)=xpP(])
99 RETURN
END

SUBROUTINE START (IRETRN)
C RUNGA=KUTTA STARTING METHOD
LYGICAL aCC
CUMMON/BLKL1/NeToTF o HoHOsHPIMoVMy J,ACCILBIRELTSTIARSTSTFACTORS
1B8ND X {(3neS) oF (3045) ¢E(30) 9 XP (30)
COMMON/RLK2/G(30,4)
J=2
CALL RNGA
10 DO 1S I=1eN
1S XP(I)=X(1e2)
C XP(I):DEL INTERVAL RESULT FOR ERROR ANALYSIS
T=T~
HEB0 54K
1F ((TeH) eNEST) GO TO 30
WRITE (9,20)
20 FORMAT(50H EGUNS CANNOT BE SOLVED FURTHER WITHIN GIVEN ERROR )




5b4

21

30

40
41

IN

lo

20

30

40

TE

1o

20

75

50
99

TPLUSH=T+H

WRITE(9,21) TPLUSH» T
FORMAT(6H TeH= £15,10s 61 T= El18410 !
IRFTRN=2

RETURN

NO 40 J=243

CALL RNGA

CALL ACCRY

IF (4NOT,ACC) GO TO 1o
JE=4

CALL RNGA

ITRF [RN=)

RETURN

END

SUBROUTINE RNGA
TEGRATE N EQNS AHEAD ON THE J/TH STEP OF LENGTH He
COMMON/RLK1/NgToTF oHosHOsHPsMyVMy J4ACCILByRELTST9yABSTST+FACTORY
1BNNsX(30+5) sF{30,5) +E(30) ¢ AP (30)
COMMON/BLK2/G(30,4)

CALL DERIVITeX(1,U=1)4F{leJd=1))

10 I=1eN

G(Itl)lHOF(I!J'l)

X(IoJ) =X (ToJ=1)+0e54G(T0l)

TT=T+0,54H

CALL DERIV(TTeX(19J)eF(1leJ))

DO 20 IxleN

G(Te2)=HeF (10 J)

X(TeJ)mx (IpJ=1)+0eS58G(142)

CALL DERIV(TTex(1s)eF(leg))

DO 30 I=1lsN

G TeI)myaF (Lo )

X(Tod)ax(led=1)e(IeI)

T=TéH

CALL DERIVI(ToX(1,J)eF(1sJ))

N0 4 Ix1yN

GlIve)mpaF (1vJ)
X(ToJ)mx(1edm1)¢(G(191)42,0#(G(1,2)+G(1+3))eG(I44))/6.0
RETURN

END

SUBROUTINE ACCRY
STS ABS AND REL ERROR AND SETS ACC +FALSE., IF NEITHER SATISFIED
LOGICAL ACC

COMMON/BLKL/NsToTFoHIHOsHPIMoVMy joACCILBsRELTST9ABSTST+FACTORY
1BND#X(3005)sF (30,5)4E(30) 4 XP(30)

ACC®e TRUE »

DO 50 I=leN

E(I)=ABS(XP(I)=X(14J))

IF (E(1) GE«ABS(X(I1,J))*RELTST) 60 Tn 10
E(I)'E(I)/ABS(X(IoJ))

GO 10

IF (;(I).GE ABSTST) $o TO 29

E(Y)=E (1) *FACTOR

G0 TO 8n

TST=H

HO=0 o 5*H

ACC=, FASE,

FORMAT(1H » l6HSTEP SIZE CcUT TOy F12,8s 6H AT Tms Fl2.8)
WRITE(9475) HOWT

GO TO 99

CONTINUE

RETURN

END



SUBROUTINE TEST (IRETRN)

MONITORS FOR VMe ENN OF INTEGN OR PRINT RANGE,
COMMON/RLK1/NoToTF s HoHo'HPOMoVMoJoAcCoLBoRFLTSToAaSTST'FACTORo
1BNN X (3095) 9F (3045) 4E(30) 9 XP (30)
DIMENSION X1(30)+X2(30)eF1€30) sF2(30)
IF (M4EQ.0) GO To 20
1F ((X(MgJ) eLEsVM) ¢ ANDo (X (Mg J=1) ,GTeVM)) 6o 10 10
IF ((X(MyJ) eGToVM) eANDG (X (Mrg=1) L EevM)} GO TO 10
G0 TO 20

10 cALL DINDE
IF(T=TF) 70470430

70 IRETRN=2
RETURN

20 IF(ABS((T=TF)/TF)=],0E=6) 80481481

80 IRETRNE?

RETURN

81 IF(T4LELTF) GO To 40

30 HaTFeT
DO 35 IaleN

35 X(1el)=x(IsdJ)

J=?

CALL RNGA
IRE TRN=2
RETURN

40 IF(TL.LT,RND) GO TO 50

SAVE ALL VARIABLES WHICH MAY BE MODTFIEn IN PRINT PROCEDURE
HSAVE=H
TSAVE=T
JSAVE=J
DO 45 I=1sN
X1(I)=X(Iel)

X2(1) =X (142)
FL{I)=F (1s1)
F2(I)=mF (1e2)
45 X(Tel)mx(led)
J=2
H=BNDeT
CALL RNGA
CALL PRINT(TeX(1,U))
BND=BND+HP

RESTURE VARIABLES Tn PROCEED
JEJSAVE
HSHSAVE
T=TSAVE
DO 46 1=19N
X(I91)=x1 (1)
x(192)ax2(1)

F(Tel)=F1(I)

46 F(Te2)zF2(I)

S0 IF (JuNE.5) GO To 99
DU 60 I=laen
x{104)=x{1+5)

N0 60 J=2+5
60 Fllsdely=F(led)
99 IRETRN=)

RE TURN

END

SUBROUTINE DIODE
FIND VALUE OF T WHERE THE M/TH VARIARLE REACHES THE VALUE VM
COMMON/RLK1/NeToTF yHIHOsHP oMy VMy J,ACCILBIRELTSTsABSTST+FACTOR
18NN X (3ne5) oF (3045) oE (30) o XP (30)
DIMENSION D(30)
Y1=X{My )
YO=X (Mg J=1)
DELT==ARS (H#Y1/{(yl=Y0))
lo H=DELT
N0 20 I=]leN
20 x(Te1)=x(19J)
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J=2

CALL RNGA

CALL DERIVI(TsX(1l4J)e)

DELT= (VM=X(MsJ)) /D (M)

1F (ABS(DELT)«GE.1,0E=4) GO TO 1p
X (Mo J) mymM

RETURN

END

SURROUT INE ADAMS

INTEGRATE ONE STEP RY THE ADAMS PRENICTOR-CORRECTOR METHOD
CUMMON/KLKL/NyToTF gHeHOsHPeMyVMy JoACCILByRELTSTyABSTST+FACTORY
18N20X(30v5)aF(30;5).E(30).XP(30)
J:
CALL DERIVITaX(1464)sF(104))
DU 10 I=xleN

10 XP(I)=X(I94)%0e046166666T#H*(55.04F (1,4)=59.0%F (193)
1437.0%F (192)=9,08#F (191))
T=T+H
CALL DERIV(TsXPsF(145))
DO 20 I=lsN

20 X(195)=x(194)+0a04166666T#H® (F.04F(1,5)¢19,0%F (1+4)
1=5,0#F (143)¢F(Ie2))
RETURN
END

SURROUTINE DOURLE ({IRETRN)
CAN INTERvVAL BE DOURLED

REAL LB

COMMON/RLK1/NeToTF oHoHOsHP oMy VM J4ACCILBoRELTST9ARSTST4FACTORY

IBND9X(3095) 9F (30,5) 4E (30) 4 XP (30)

CUMMON/RLKS/ IDOURL y NDOUBL

100UBL=TDOUBL+1

1F (IDOURLLT+NDOUBL) GO TO 99
ALLOWNS DOURLE ATTEMPT ONLY EVERY NDouUBL/TH CALL

1bouBL =g

DO 10 IxlsN

1F (E(1),GT.LB) GO TO 99
10 CONTINUE

Dl=HP/ (2,0%H)

1FtD1.LE«2.0) GO TO 99

D2= (BND=T) /(20 0%H)

IF(D2.LE«2+0) GO TO 99

DO 20 I=lseN
20 X(Isl)3x(194)

HUz=2.0%H

HZ2+0%H0
30 FORMAT(18H STEP INCREASED TO F12.By 6H AT T= Fl2,8)

WRITE(9,430)HOsT

TRETRN=2

RETURN
99 1RFTRN=)

RETURN

END

SUBROUTINE DERIV(TsVeFD)

DIMENSION V{(30)srD(30)

COMPLEX UBAZUFEUEA UFBIUFA,UEB

COMPLEX XMMg¢XMMP 4RRyRRPsVVsVVP

CUMMON/BLK3/ XMM s XMMP sRReRRP s VV o VYP s GAMMA2 s WAB s WAE s WAF ¢ WBE s WBF o WEF 4
1WFREQ1 *wFREQ2



e NeNaXe] o0

COMMON/RLKT/IDERTV
IDERIVEIDERIVe]
FOFTiaCnS(WFREQleT)

REPLACE FOFT1 BY FOFT1#(DESIRED SLOwWw FUNCTION OF TIME) TO MOOULATE
RR 9 RRP s MM ¢ MMP

IF

FOFT2=CnS (WFREQ2eT)
FREQ2=0,0 IS ONLY CASE OF INTEREST SET FOFT2ml.0 TO SAVE COMPUTER

TIME

REPLACE FOFT2 BY FOFT2#(DESIRED SLOW FUNCTION OF TIMg) TO MODULATE
VVevVe

101

200

201

300

UR==SIN(WAE®T)
ul=z=COS (WAE®T)
UEA=RR#FOF T1 #CMPL_X (UR,UI)
UR==SIn(WBE®T)
Ul==COS (WBE*T)
UERaVV#FOF T24CMP X (URUI)
UEAR=REAL (UEA)
UERR=REAL (UEB)
UEAI=AIMAG (UEA)
UERI=AIMAG (UEB)
FD(1)3'UEAR°V(5)-UEAI“V(6)
FU(2)=UEAI®V (S) = EAR®V (6)
FO(3)==yUEBR*V(5)«UEBI#V (6)
FU4)BUFRI®V(S)=1|ERR*V (6)
FO(S)BUEARSV (1) =UEAI*V (2) +UERR#Y (3) =yEBI®V (4) =GAMMA2*V (5)
FD(6)SUEATI#V(]) +UEARYV (2) ¢UERI®V (3) +yEBR&V (4) «GAMMA2®*Y (6)
FD(T7)==GAMMAR®V (7)
FU(B) x=GAMMAZ®YV (R)
IF (CABS(RRP) «NEege0) GO TO 101
IF (CABS(VVP) «NEene0) GO TO 101l
GO TO 200
UR==SIN (WBF#T)

1==COS(WBF*T)
UFB3RRP#FOFT1eCMPLX (UReUI)
UR==SIN(WAF#T)
Ul==COS(WAF*T)
UF ASVVP#FOF T2#CMPLX (URyUI)
UFBR=REAL (UFB)
UFAR=REAL (UFA)
UFRI=AIMAG(UFB)
UFAI=AIMAG(UFA)
FO(I)=FD (1) =UFAR#V(T)=UFAI#*V(8)
FO(2)=FN(2)+UFAlaV (7) =UFAR®V (8)
FD(3)=FD(3)~UFBR#V (7) «UFBI%V (8)
FU(4)=FD(4)+UFR1aV (7)=UFBR*V (8)
FOL7)sFN(7) ¢UFARSV (1) =UFAT®V (2) ¢sIFBRaV (3)=UFBI*V(4)
FLU(B)SFD(B)+UFAT#V (1) ¢UFAR®V (2) ¢ yFB1aV (3) *UFBR*V (4)
TF (CABS (XMM) «NEene0) GO TO 201
1F (CABS (XMMP) NE,0,0) GO TO 201
GO TO 3¢00
UR==SIN(WAR®*T)
ul==COS(WAB#*T)
UBASXMMeFOF T14CMPLX (URWUI)
UR==SIN(WEF#T)
Ul==COS (WEF#T)
UFE=XMMPaFOF T1#CMPL X (URyUT)}
UBAR=REAL (UBA)
UFER=REAL (UFE)
uBaIaAIMAG (UBA)
UFEI=AIMAG(UFE)
FD(1)=FN({1)=UBARuV (3) «UBAI®V (4)
FO(2)=FD(2) ¢+UBAleV (3) «UBAR*V (4)
FO(3)=FD (3} ¢UBARaV (1) =UBALI®V (2)
FD{4)=FN(4)+UBAI#V (1) +UBAR®V (2)
F(5)=FD(5)=UFER#V (7) =UFET*V (8)
FO(BIBFD(6) *UFET#V (7) «UFER®V (8)
FO(T)=FD(7) sUFER#V(5)=UFEI*V (6)
FD(8)=FD(B8)+UFET&V (5S) s UFER®V (6)
RETURN
END
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SUKROUTTINE PRINT(T,V)

DIMENSION V(30)

COMMON ARL(3+¢10045) ¢BRL(3910095) 4CRL(39100¢5)+DRL(3+10095)
1AIM{3910095) +BIM(34100¢5)9CIM(397005) yDIM(3410095) ¢ ICASEyIFREQ,
2ITIMELTIME(100)

cOMMON/aLKI/NuToTF.HoHo.HP.M.VM.J.ACcoLBoBELTSToABSTST.FACTORo
1BND9X(30+5) 9F (30,5) ¢E(30) $XP(30)

COMMON/BLKT/IDERTV

ITIME=ITIME+]

FITIME=TTIME

TIME(ITIME)SFITIME®HP

WRITE(9,10) ICASE,ITIME,IFREQ,IDERIV

FORMAT(gH ICASE T446H ITIME l4gsgH IFREQ I4¢13H OERIV CYCLES 110)

FORMAT(9F 1246}

WRITE(9,11)Te(V(]I)gIx],+8)

ARL(ICASEsITIMEY IFREQ)=V(}])

AIM(ICASEsITIME, IFREQ) =V (2)

BRL(IICASESITIME ¢ IFREQ) =V (3)

BIM(ICASEZITIMESIFREVD) 2V (4)

CRLUICASESITIMEs IFREW) =V (5)

CIMIICASEsITIMEIFREQ) =V ()

NRL(ICASE»ITIMEs IFREW)=V(T)

DIM(ICASEyITIME s TFREQ) 2V (8)

RETURN

END

SURROUTINE BREIT(XIoFFFeXMsGU9GT ,DELWIBGAUSS W9 XGAUSSHEPS])
I1SGN=FFF

FRISGN

SGNE(F#2,0=140) % (DELW/2.0)
GJI'GJ‘0.00ZZ‘)&(GJ-I.o)
FPS=140/({GJ1*183641/GI=140)
XGAUSS=GJUL#9¢2732%RGAUSS/ (6.6254NELWa (140*EPS) )
EPS1ZEPSHDELWR#XGAUSS
W3eDELW/ (409X ¢2+0) *EPS1#XM

BE2e0# XM/ (X140.5)

IF(B2le0)1ole2

1F (XGAUSS=10)2¢3¢3

SGM==SGN
WEW*SGN#SQRT (14 0+BHXGAUSS+XGAUSSeXGALSS)

IF (GJeGFEela0) RETURN

DELTAZARS (W) %4, 0#BGAUSS/ (90085214 ,0)

WEW=DELTA

RETURN

END




